Honors Chemistry / SAT II

Table of Contents

I. STRUCTURE OF MATTER

1. Matter
A. Substances
i. Elements 1
ii. Compounds 2
B. Mixtures 4
2. Atomic Theory and Structure
A. Development of Atomic Theory
i. Empty Space Concept 6
iii. Bohr's Model, 7
iiii. Spectral Lines 9
B. Orbital Model of the Atom
i. Quantum Energy Levels 10
ii. Heisenberg Uncertainty Principle 11
iiii. Electron Configurations. 12
iv. Valence Electrons 17
v. Lewis Electron Diagrams 19
C. Quantum Numbers
i. Properties 20
D. Atomic Masses
i. Atomic Mass/Mass Number 21
ii. Atomic Number 24
iii. Isotopes 26
iv. The Nucleus 28
E. Electrons and Ions
i. Electrons and lons 31
ii. lons 33
iii. Ionization Energy 36
F. Subatomic Particles
i. Properties 37
ii. Masses 37
iii. AZX Convention 38
3. Periodic Relationships
A. Development of the Periodic Table
i. Periodic Law 39
B. Structure of the Periodic Table
i. Columns (Groups) 40
ii. Rows (Periods) 42
C. Properties of Elements
i. Covalent Atomic Radius 43
ii. lonic Radius. 46
iii. Ionization Energy 48
iv. Oxidation States 55
v. Electron Affinity.
vi. Electronegativity. 56
vii. Metals 59
viii. Nonmetals
a. Properties 60
b. Monatomic Molecules. 61
ix. Metalloids 62
x. Phases. 62
D. Chemistry of Groups
i. Groups IA, IIA, and IIIA 63
ii. Groups IVA, VA, and VIA 66
iii. Group VIIA 67
iv. Group 0 68
v. Tansition Metals 69
E. Chemistry of Periods. 70
4. Chemical Bonding
A. The Nature of Chemical Bonding
i. Chemical Energy 70
ii. Bonding and Stability 72
iii. Electronegativity 74
iv. Bond Length 77
B. Bond Types
i. Ionic Bonds 78
ii. Covalent Bonds
a. Nonpolar Covalent 83
b. Polar Covalent. 84
c. Coordinate Covalent. 85
d. Network 87
iii. Metallic Bonds 88
C. Polarity 91
D. Molecular Attraction
i. Dipoles 92
ii. Hydrogen Bonding. 94
iii. Van der Waals Forces 98
iv. Molecule-Ion Attraction. 101
E. Molecular Structure
i. Lewis Structures 102
ii. Formal Charge 107
iii. Resonance 108
iv. Hybridization 108
v. Geometry and VSEPR 109
vi. Sigma and Pi Bonds 112
F. Properties of Substances 113
5. Chemical Compounds
A. Formulas
i. Molecular 114
ii. Empirical 115
B. Naming Compounds 116
C. Writing Formulas 119
D. Balancing Chemical Equations 125
6. Nuclear Decay
A. Emanations
i. Alpha Decay 129
ii. Beta Decay 130
iii. Gamma radiation 132
iv. Separating Emanations. 132
B. Half-Life
i. Half-Life 134
C. Mass-Energy Equivalence
i. Nuclear Binding Energy 136
ii. Mass Defect 137
7. Relationship Analysis Questions 138
II. STATES OF MATTER
8. Gases
A. Ideal Gas Laws
i. Standard Temperature and Pressure 155
ii. Boyle's Law... 156
iii. Charles' Law 158
iv. Partial Pressures. 160
v. Combined Gas Law 161
vi. Graham's Law 162
B. Kinetic-Molecular Theory
i. Theory 163
ii. The Mole Concept. 167
iii. Temperature 170
iv. Average Molecular Speed 171
v. Deviations 172
C. Measurement
i. Barometers and Manometers 172
9. Liquids and Solids
A. Kinetic-Molecular Theory 174
B. Phase Changes
i. Boiling Point. 174
ii. Heat of Vaporization 175
iii. Vapor Pressure 176
iv. Melting Point. 177
v. Heat of Fusion 180
vi. Sublimation. 181
C. Phase Diagrams 182
D. Solid Structures
i. Crystals 185
ii. Network Solids 186
10. Solutions
A. Solubility
i. Saturated/Unsaturated 189
ii. Dilute/Concentrated. 195
B. Concentration
i. Molarity 197
ii. Molality 203
iii. Mole Fraction. 204
iv. Mass Percent. 204
C. Colligative Properties
i. Boiling Point Elevation. 205
ii. Freezing Point Depression. 206
11. Relationship Analysis Questions 207
III. REACTIONS
12. General
A. Conservations Law
i. Conservation of Mass. 217
B. Products and Reactants
i. Limiting Reagents. 217
ii. Percent Yield 218
C. Single Displacement Reactions. 218
13. Acids and Bases
A. Electrolytes. 219
B. Arrhenius Theory
i. Acids. 220
ii. Bases. 222
C. Bronsted-Lowry Theory
i. Acids 223
ii. Bases 226
D. Lewis Theory 228
E. Naming Acids 228
F. Strong vs. Weak
i. Acids. 229
ii. Bases 229
G. Amphiprotic Substances 230
H. Indicators
i. Acid/Neutral Indicators 231
ii. Base Indicators 235
I. Reactions
i. Neutralization
a. Titration 238
b. Salts and Endpoints 243
ii. Conjugates and Buffers 246
iii. Hydrolysis. 252
J. Ionization Constants
i. Kw. 256
ii. pH 261
iii. Ka. 266
14. Oxidation-Reduction Reactions
A. Oxidation (Reducing Agents) 279
B. Reduction (Oxidizing Agents). 280
C. Oxidation Number 281
15. Electrochemistry
A. Half Cells
i. Half Reactions 282
ii. Standard Electrode Potentials 284
iii. Half Cell Potentials 285
B. Electrochemical Cells
i. Direction of Electron/Ion Flow. 286
ii. Standard Electrode Potentials 287
iii. Equilibrium 292
C. Redox Reactions
i. Oxidizing and Reducing Agents 293
ii. Balancing Redox Reactions. 294
iii. Identifying Redox Reactions. 295
D. Electrolytic Cells 296
ii. Anode 297
iii. Cathode. 297
16. Relationship Analysis Questions 298
IV. STOICHIOMETRY
17. The Mole Concept
A. Mole Interpretation 307
B. Molar Mass 308
C. Molar Volume of a Gas 312
D. Gas Density 314
E. Number of Molecules per Mole 316
18. Problems Involving Formulas
A. Percent Composition 320
B. Empirical Formula 324
C. Molecular Formula 325
19. Problems Involving Equations
A. Mass Problems 327
B. Mass-Volume Problems 330
C. Mole Problems 332
D. Volume Problems 336
20. Relationship Analysis Questions 338
V. EQUILIBRIUM AND KINETICS
21. Dynamic Equilibrium
A. Phase Equilibrium 339
B. Solution Equilibrium
i. Solubility Product Constant (Ksp) 339
ii. Common Ion Effect. 340
22. LeChatelier's Principle
A. Effect of a Catalyst 341
B. Effect of Concentration 341
C. Effect of Pressure 347
D. Effect of Temperature 348
23. Law of Chemical Equilibrium
A. Equilibrium Constant Expressions 349
B. Concentrations at Equilibrium 354
24. Role of Energy in Reactions
A. Activation Energy 355
B. Heat (Enthalpy) of Reaction 357
C. Potential Energy Diagram 358
25. Reaction Rates
A. Catalysts 361
B. Concentration. 362
C. Surface Area 363
D. Temperature 364
E. Collision Theory 365
26. Spontaneity
A. Energy (Enthalpy) 365
B. Entropy 369
C. Free Energy 372
D. Predicting Spontaneous Reactions 373
27. Relationship Analysis Questions 375
VI. THERMODYNAMICS
28. Energy
A. Forms of Energy
i. Kinetic Energy 379
ii. Potential Energy 379
B. Measurement of Energy
i. Calorie 380
ii. Thermometry 381
29. Energy Changes
A. Physical Processes
i. Specific Heat Capacity 382
B. Chemical Processes
i. Exothermic Reactions 382
ii. Endothermic Reactions 383
30. Calorimetry
A. Phase Changes
i. Heat of Vaporization 383
ii. Heat of Fusion 384
31. Relationship Analysis Questions 385

VII. NUCLEAR CHEMISTRY

1. Artificial Radioactivity
A. Artificial Transmutation 387
B. Accelerators 388
2. Nuclear energy
A. Fission Reaction
i. Moderators 388
ii. Control Rods 388
iii. Coolants 389
iv. Shielding 389
B. Fusion Reaction
i. Fuels 390
C. Radioactive Wastes 390
D. Uses of Radioisotopes 391
3. Relationship Analysis Questions 392
VIII. DESCRIPTIVE CHEMISTRY
4. Organic Chemistry
A. General Properties
i. Bonding 393
ii. Structural Formulas 393
iii. Isomers 394
iv. Saturated/Unsaturated Hydrocarbons 397
v. Properties 399
B. Homologous Series of Hydrocarbons
i. Alkanes 400
ii. Alkenes 401
iii. Alkynes 402
iv. Benzene Series 403
C. Other Organic Compounds
i. Alcohols
a. Monohydroxy 404
b. Dihydroxy 406
c. Trihydroxy 407
ii. Organic Acids 408
iii. Aldehydes 410
iv. Ketones 411
v. Ethers 412
vi. Halides 413
D. Organic Reactions
i. Substitution 415
ii. Addition 416
iii. Fermentation 417
iv. Esterification 418
v. Organic Oxidation 419
vi. Polymerization
a. Addition 419
b. Condensation 420
5. Industrial Applications
A. Haber Process 420
B. Petroleum 422
6. Relationship Analysis Questions 423
IX. LABORATORY
7. Activities 425
8. Equipment 426
9. Measurement 426
10. Reports 428
11. Skills 429
12. Error 430
13. Relationship Analysis Questions 431

UNIT I

STRUCTURE OF MATTER

I. STRUCTURE OF MATTER

2. Atomic Theory and Structure

A. Development of Atomic Theory

2159. What is the shell configuration of electrons for neutral atoms of nickel, ${ }_{28} \mathrm{Ni}$, in the ground state?
(A) 2-8-16-2
(D) $2-18-8-0$
(B) $2-8-10-8$
(E) 2-8-16-28
(C) $2-8-8-10$
2160. What is the electron shell configuration for ions of selenium, ${ }_{34} \mathrm{Se}^{2-}$?
(A) 2-8-18-6
(D) 2-8-18-8
(B) 2-8-18-8-2
(E) $2-8-14-12$
(C) $2-8-18-4$
2161. What is the electron shell configuration for calcium ions, Ca^{2+} ?
(A) $2-8-8-2$
(D) 2-8-6
(B) 2-8-8
(E) $2-8-6-2$
(C) 2-8-8-4
2162. In the orbital notation $1 \mathrm{~s}^{2}$ the coefficient 1 indicates that
(A) helium has 1 electron
(B) helium has an atomic number of 1
(C) helium has an atomic mass of 1
(D) helium has an energy level of 1
(E) helium has 1 neutron
2163. The maximum number of electrons in the second energy level, $\mathrm{n}=2$, of any atom, is
(A) 8
(D) 4
(B) 2
(E) 6
(C) 16
2164. The maximum number of electrons that may be accommodated in the $4^{\text {th }}$ energy level of any atom is
(A) 4
(D) 16
(B) 8
(E) 32
(C) 12
2165. The maximum number of electrons which can occupy the 3rd energy level of any atom is
(A) 2
(D) 12
(B) 8
(E) 18
(C) 9
2166. The maximum number of electrons which can occupy the 1 st principal energy level of any atom is
(A) 8
(D) 18
(B) 2
(E) 4
(C) 10
2167. The Bohr energy shell representation for a neutral atom of sulfur, ${ }_{16}^{32} \mathrm{~S}$, is
(A)

(D)

(B)

(E)

(C)

2168. "The atom consists of a nucleus containing subatomic particles and electrons arranged in concentric shells around the nucleus." This description most clearly fits the atomic theory proposed by
(A) Bohr
(D) Thomson
(B) Rutherford
(E) Avogadro
(C) Dalton
2169. The maximum number of electrons possible in the second energy level of an atom is
(A) 8
(D) 18
(B) 2
(E) 6
(C) 10
2170. The maximum numbers of electrons in the K, L, M, and N shells of any element are respectively
(A) $1,2,8,16$
(D) 2, 8, 18, 32
(B) $1,4,9,16$
(E) $2,6,10,14$
(C) $2,8,16,24$

I. STRUCTURE OF MATTER

2138. When an electron moves from the level where $n=4$ to the level where $\mathrm{n}=2$, the change in energy is

Bohr Equation

$$
E=\frac{-1312 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}}{\mathrm{n}^{2}}
$$

(A) $+246 . \mathrm{kJ}^{2} \mathrm{~mol}^{-1}$
(D) $-307 . \mathrm{kJ} \cdot \mathrm{mol}^{-1}$
(B) $-246 . \mathrm{kJ}^{2} \mathrm{~mol}^{-1}$
(E) $-656 . \mathrm{kJ} \cdot \mathrm{mol}^{-1}$
(C) $+307 . \mathrm{kJ}^{2} \mathrm{~mol}^{-1}$
2139. When an electron moves from the level where $\mathrm{n}=3$ to the level where $\mathrm{n}=1$, the change in energy is

$$
\begin{aligned}
& \text { Bohr Equation } \\
& E=\frac{-1312 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}}{n^{2}}
\end{aligned}
$$

(A) $-874 . \mathrm{kJ}^{2} \cdot \mathrm{~mol}^{-1}$
(D) $+1166 . \mathrm{kJ}^{2} \cdot \mathrm{~mol}^{-1}$
(B) $+874 . \mathrm{kJ}^{\mathrm{J}} \mathrm{mol}^{-1}$
(E) $+656 . \mathrm{kJ} \cdot \mathrm{mol}^{-1}$
(C) $-1166 . \mathrm{kJ}^{\circ} \cdot \mathrm{mol}^{-1}$
2140. Movement of an electron from the $5^{\text {th }}$ to the $1^{\text {st }}$ energy level in an atom is:
(A) exothermic and absorbs energy.
(B) exothermic and evolves energy.
(C) endothermic and absorbs energy.
(D) endothermic and evolves energy.
(E) neither exothermic nor endothermic.
2141. Movement of an electron from the $4^{\text {th }}$ to the $8^{\text {th }}$ energy level in an atom is
(A) exothermic and absorbs energy
(B) exothermic and evolves energy
(C) endothermic and absorbs energy
(D) endothermic and evolves energy
(E) neither endothermic nor exothermic
2142. Sunlight, when viewed through a prism or a diffraction grating, shows all of the colors of visible light. This is an example of a
(A) bright line spectrum
(D) visible spectrum
(B) continuous spectrum
(E) ultraviolet spectrum
(C) infrared spectrum
2143. Neon light, when viewed through a prism or a diffraction grating, shows only certain colors of visible light. This is an example of a
(A) bright line spectrum
(D) visible spectrum
(B) continuous spectrum
(E) absorbtion spectrum
(C) infrared spectrum
2264. A single burst of visible light is released by an atom. Which is an explanation of what happened in the atom? An electron
(A) removed a proton from the nucleus
(B) was changed from a particle to a wave
(C) moved from a higher to a lower energy level
(D) moved from a lower to a higher energy level
(E) was released from the nucleus
2265. What is the mass number of a potassium ion, K^{+}, consisting of 18 electrons, 19 protons and 20 neutrons?
(A) 36
(D) 39
(B) 37
(E) 57
(C) 38
2485. The light from fluorescent lights, when analyzed in a spectrometer, exhibit the same lines in the yellow, green and blue spectral regions. This is evidence that
(A) fluorescent lights contain fluorine gas
(B) air is present in all fluorescent lights
(C) there are no gases present in fluorescent lights
(D) the same element is present in all the fluorescent lights
(E) different elements are present in each fluorescent light
2486. The colors of the spectral emission lines produced by the gas in a discharge tube are determined by the
(A) applied voltage
(D) temperature of the gas
(B) pressure of the gas
(E) applied current
(C) gas used in the tube
2989. Which of the following statements are true?
I. The energy of electromagnetic radiation increases as its frequency increases.
II. The energy of an atom is increased as it emits electromagnetic radiation.
III. An excited atom returns to its ground state by absorbing electromagnetic radiation.
IV. The frequency and wavelength of electromagnetic radiation are inversely proportional.
V. An electron in the $\mathrm{n}=3$ state in the hydrogen atom can go to the $\mathrm{n}=1$ state by emitting electromagnetic radiation at the appropriate frequency.
(A) II, III, and V only
(D) I, IV, and V only
(B) III and IV only
(E) II, III, and V only
(C) I, II, and III only
I. STRUCTURE OF MATTER
B. Orbital Model of the Atom
2. Atomic Theory and Structure iii. Electron Configurations
2500. The electronic configuration of the S^{2-} ion is
(A) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{2}$
(D) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
(B) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$
(E) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{4} 3 p^{4}$
(C) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$
2501. The atomic number of an element whose electronic configuration is $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{1}$ is
(A) 1
(D) 4
(B) 2
(E) 5
(C) 3
2502. Consider the orbital diagram

The species that does not have this orbital occupancy pattern is
(A) ${ }_{18}^{40} \mathrm{Ar}$
(D) ${ }_{19}^{39} \mathrm{~K}^{+}$
(B) ${ }_{16}^{34} \mathrm{~S}$
(E) ${ }_{16}^{32} \mathrm{~S}^{2-}$
(C) ${ }_{17}^{37} \mathrm{Cl}^{-}$
2503. The orbital diagram for an atom of sodium, ${ }_{11} \mathrm{Na}$, in its lowest energy state is
(A)

(B)

(C)

(D) $\uparrow(\uparrow \uparrow(T) T$

1s $2 \mathrm{~s} 2 \mathrm{p} \times 2 \mathrm{py} 2 \mathrm{pz} 3 \mathrm{~s} 3 \mathrm{p}$
(E) none of the above.
2504. Consider the orbital diagram.

The species that has this orbital configuration is
(A) ${ }_{7}^{13} \mathrm{~N}$
(D) ${ }_{15}^{31} \mathrm{P}^{3-}$
(B) ${ }_{13}^{27} \mathrm{Al}$
(E) None of the above
(C) ${ }_{13}^{27} \mathrm{Al}^{3+}$
2505. Which species has the same number of electrons as the magnesium ion, Mg^{2+} ?
(A) Ca^{2+}
(D) Ne^{+}
(B) Na^{+}
(E) Ba^{2+}
(C) F
2506. The species having the same number of electrons as Mg^{2+} is
(A) Na
(D) Ar
(B) O^{2-}
(E) Ne^{1+}
(C) N^{-}
2507. Which of the species is the most stable?
(A) $\mathrm{He}(\mathrm{g})$
(D) $\mathrm{Ne}^{+}(\mathrm{g})$
(B) $\mathrm{He}^{+}(\mathrm{g})$
(E) $\mathrm{Xe}(\mathrm{g})$
(C) $\mathrm{Ne}(\mathrm{g})$
2508. Which shell electron configuration is that of the most reactive nonmetal?
(A) $2,8,1$
(D) $2,8,8$
(B) $2,8,3$
(E) $2,8,6$
(C) $2,8,7$
2509. How many electrons are usually left out of the condensed electron dot diagrams of elements with atomic numbers 11 to 18 ?
(A) 8
(D) 12
(B) 2
(E) 18
(C) 10
2510. The shell electron configuration of a neutral carbon atom is
(A) 1,5
(D) $2,2,4$
(B) 2,4
(E) 2,2,2
(C) 2, 6
2511.The ground state electronic configuration for an atom of neon, ${ }_{10}^{20} \mathrm{Ne}$, is
(A) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2}$
(D) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
(B) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6}$
(E) $1 s^{2} 2 s^{4} 2 p^{4}$
(C) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{1}$
3850. Which of the following could not represent the electron configuration of a neutral atom in the ground state?
(A) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{4}$
(D) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2}$
(B) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{2}$
(E) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$
(C) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{3} 3 p^{4}$

I. STRUCTURE OF MATTER

 E. Molecular Structure
4. Chemical Bonding

1597. Which term best describes the molecular geometry of ethylene, $\mathrm{C}_{2} \mathrm{H}_{4}$?
(A) Linear
(D) Octahedral
(B) Planar
(E) Trigonal
(C) Pyramidal
1598. The arrangement of atoms in a water molecule, $\mathrm{H}_{2} \mathrm{O}$, is best described as
(A) ring
(D) trigonal pyramidal
(B) trigonal planar
(E) bent
(C) linear
1599. The shape of a chloroform molecule, CHCl_{3}. is
(A) linear
(D) planar triangular
(B) octahedral
(E) seesaw
(C) tetrahedral
1600. Which is the shape of the ammonium ion, $\mathrm{NH}_{4}{ }^{+}$?
(A) Linear
(D) Trigonal pyramidal
(B) Tetrahedral
(E) Bent
(C) Trigonal planar
1601. What is the geometry of the CHCl_{3} molecule?
(A) Bent
(D) Trigonal pyramidal
(B) Linear
(E) Planar triangular
(C) Tetrahedral
1602. What is the geometry of the BF_{3} molecule?
(A) Bent
(D) Trigonal pyramidal
(B) Linear
(E) Planar triangular
(C) Tetrahedral
1603. What is the geometry of the NH_{3} molecule?
(A) Bent
(D) Trigonal pyramidal
(B) Linear
(E) Planar triangular
(C) Tetrahedral
1604. What is the geometry of the HBr molecule?
(A) Bent
(D) Trigonal pyramidal
(B) Linear
(E) Planar triangular
(C) Tetrahedral
1605. What is the geometry of the SF_{2} molecule?
(A) Bent
(D) Trigonal pyramidal
(B) Linear
(E) Planar triangular
(C) Tetrahedral
1606. Predict the geometry of the CO_{2} molecule.
(A) Bent
(D) Trigonal pyramidal
(B) Linear
(E) Planar triangular
(C) Tetrahedral
1607. Predict the geometry of the CH_{4} molecule.
(A) Bent
(D) Trigonal pyramidal
(B) Linear
(E) Planar triangular
(C) Tetrahedral
1608. Predict the geometry of the HI molecule.
(A) Bent
(D) Trigonal pyramidal
(B) Linear
(E) Planar triangular
(C) Tetrahedral
1609. Predict the geometry and polar nature of the PH_{3} molecule.
(A) linear dipole
(D) pyramidal nondipole
(B) linear nondipole
(E) tetrahedral nondipole
(C) pyramidal dipole
1610. Predict the geometry and polar nature of the BeF_{2} molecule.
(A) bent dipole
(D) pyramidal dipole
(B) linear dipole
(E) tetrahedral nondipole
(C) linear nondipole
1611. Predict the geometry and polar nature of the FCl molecule.
(A) linear dipole
(D) pyramidal nondipole
(B) linear nondipole
(E) tetrahedral nondipole
(C) pyramidal dipole
1612. Predict the geometry and polar nature of the NH_{3} molecule.
(A) bent dipole
(D) pyramidal nondipole
(B) linear dipole
(E) tetrahedral nondipole
(C) pyramidal dipole
1613. Predict the geometry and polar nature of the CCl_{4} molecule.
(A) linear dipole
(D) pyramidal nondipole
(B) linear nondipole
(E) tetrahedral nondipole
(C) pyramidal dipole
1614. Predict the geometry and polar nature of the $\mathrm{H}_{2} \mathrm{O}$ molecule.
(A) bent dipole
(D) pyramidal dipole
(B) linear dipole
(E) tetrahedral nondipole
(C) linear nondipole
1615. Predict the geometry and polar nature of the BeFCl molecule.
(A) bent dipole
(D) pyramidal dipole
(B) linear dipole
(E) tetrahedral nondipole
(C) linear nondipole
1616. Predict the geometry and polar nature of the CHCl_{3} molecule.
(A) bent dipole
(D) tetrahedral dipole
(B) linear dipole
(E) tetrahedral nondipole
(C) linear nondipole
1617. Predict the geometry and polar nature of the CO_{2} molecule.
(A) bent dipole
(D) tetrahedral dipole
(B) linear dipole
(E) tetrahedral nondipole
(C) linear nondipole
1618. The shape of the sulfate ion, $\mathrm{SO}_{4}{ }^{2-}$, is most similar to the shape of
(A) $\mathrm{N}_{2} \mathrm{H}_{4}$
(D) SiH_{4}
(B) $\mathrm{CO}_{3}{ }^{2-}$
(E) $\mathrm{SO}_{3}{ }^{2-}$
(C) $\mathrm{C}_{2} \mathrm{H}_{4}$
1619. The molecular geometry of the sulfite ion, $\mathrm{SO}_{3}{ }^{2-}$, is most similar to that of
(A) water, $\mathrm{H}_{2} \mathrm{O}$
(B) the sulfate ion, $\mathrm{SO}_{4}{ }^{2-}$
(C) the ammonium ion, NH_{4}^{+}
(D) the hydronium ion, $\mathrm{H}_{3} \mathrm{O}^{+}$
(E) boron chloride, BCl_{3}
1620. The shape of the carbonate ion, $\mathrm{CO}_{3}{ }^{2-}$ is
(A) linear
(D) tetrahedral
(B) pyramidal
(E) trigonal planar
(C) octahedral
1621. The shape of a BF_{3} molecule is
(A) octahedral
(D) tetrahedral
(B) planar triangular
(E) trigonal pyramidal
(C) square pyramidal
1622. Which consists of tetrahedral molecules?
(A) CsCl
(D) $\mathrm{H}_{2} \mathrm{O}$
(B) CO_{2}
(E) NH_{3}
(C) $\mathbf{C C l}_{4}$
1623. The F-B-F angle in a BF_{3} molecule is
(A) 90°
(D) 120°
(B) 102°
(E) 180°
(C) 109.5°
1624. The shape of an NF_{3} molecule is
(A) tetrahedral
(D) pyramidal
(B) trigonal bipyramidal
(E) trigonal planar
(C) octahedral
1625. Which best describes the geometry of the ammonia molecule, NH_{3} ?
(A)

linear
(B)

T-shaped
(C)

planar triangular
(D)

H
trigonal pyramidal
(E)

Square- shaped
1897. Which formula represents a compound whose molecules are tetrahedral?
(A) BH_{3}
(D) $\mathrm{H}_{2} \mathrm{O}$
(B) $\mathrm{C}_{2} \mathrm{H}_{2}$
(E) $\mathrm{C}_{2} \mathrm{H}_{6}$
(C) $\mathbf{C H}_{4}$
1899. The shape of the BCl_{3} molecule is
(A) linear
(D) trigonal pyramidal
(B) octahedral
(E) tetrahedral
(C) planar triangular
1900. A molecule of CH_{4} is
(A) bent and polar
(B) linear and nonpolar
(C) tetrahedral and nonpolar
(D) trigonal pyramidal and polar
(E) trigonal planar and nonpolar

I. STRUCTURE OF MATTER

 E. Molecular Structure4. Chemical Bonding
5. A molecule of NH_{3} is
(A) bent and polar
(B) linear and nonpolar
(C) tetrahedral and nonpolar
(D) trigonal pyramidal and polar
(E) trigonal planar and nonpolar
6. The shape of the CO_{2} (carbon dioxide) molecule is
(A) bent
(D) tetrahedral
(B) octagonal
(E) linear
(C) pyramidal
7. The shape of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is
(A) linear
(D) tetrahedral
(B) planar
(E) seesaw
(C) pyramidal
8. The shape of the CH_{4} molecule is
(A) octahedral
(D) square planar
(B) rectangular
(E) trigonal planar
(C) tetrahedral
9. The $\mathrm{H}-\mathrm{N}-\mathrm{H}$ bond angle in NH_{3} is less than the $\mathrm{H}-\mathrm{C}-\mathrm{H}$ angle in CH_{4} due to the
(A) pair of nonbonded electrons in ammonia.
(B) repulsion between hydrogen atoms in ammonia.
(C) attraction between hydrogen atoms in methane.
(D) tetrahedral shape of ammonia and methane molecules.
(E) larger size of the nitrogen atom than the carbon atom.
10. The bonding orbitals on the boron atom in BF_{3} molecule are
(A) s orbitals
(D) $s p^{3}$ orbitals
(B) $s p$ orbitals
(E) p orbitals
(C) $s p^{2}$ orbitals
11. The shape of a water molecule is
(A) bent
(D) tetrahedral
(B) planar
(E) octahedral
(C) pyramidal
12. What is the structural shape of the SF_{6} molecule?
(A) linear
(D) square planar
(B) octahedral
(E) hexahedral
(C) tetrahedral
13. The shape of an NH_{3} molecule is
(A) linear
(D) trigonal pyramidal
(B) tetrahedral
(E) bipyramidal
(C) planar triangular
14. The shape of methane molecules, CH_{4}, is
(A) bent
(D) octahedral
(B) triangular
(E) planar
(C) tetrahedral
15. The molecule carbon dioxide, CO_{2},
(A) is bent
(B) is linear
(C) has two nonbonding electrons
(D) has one double and one single bond
(E) trigonal planar
16. The shape of the ammonia $\left(\mathrm{NH}_{3}\right)$ molecule is
(A) linear
(D) trigonal pyramidal
(B) tetrahedral
(E) square planar
(C) trigonal planar
17. A molecule of CO_{2} (carbon dioxide) is
(A) bent and polar
(D) pyramidal and polar
(B) linear and polar
(E) linear and nonpolar
(C) bent and nonpolar
18. Carbon dioxide is
(A) linear and polar
(D) bent and nonpolar
(B) linear and nonpolar
(E) trigonal planar and polar
(C) bent and polar

UNIT II

STATES OF MATTER
2658. A sample of gas occupies 850 ml at $0^{\circ} \mathrm{C}$ and 710 mmHg . Which expression allows computation of the volume of this sample at standard pressure at constant temperature.
(A) $\mathbf{8 5 0} \mathbf{~ m l} \times \frac{\mathbf{7 1 0} \mathrm{mm}}{\mathbf{7 6 0} \mathbf{~ m m}}$
(B) $850 \mathrm{ml} \times \frac{760 \mathrm{~mm}}{710 \mathrm{~mm}}$
(C) $\frac{1}{850 \mathrm{ml}} \times \frac{710 \mathrm{~mm}}{760 \mathrm{~mm}}$
(D) $\frac{1}{850 \mathrm{ml}} \times \frac{760 \mathrm{~mm}}{710 \mathrm{~mm}}$
(E) $273 \mathrm{~K} \times 760 \mathrm{~mm}$
$850 \mathrm{ml} \quad 710 \mathrm{~mm}$
2664. A gas occupies a volume of 2.0 liters at 13 atm . How many liters is occupied by this gas at 1.0 atm and the same temperature?
(A) 0.15
(D) 4.0
(B) 13
(E) 0.06
(C) 26
2674. A weather balloon contains 12 liters of hydrogen at 740 mmHg pressure. At this same temperature, at what pressure will the volume become 20 liters?
(A) 370 mmHg
(D) 888 mmHg
(B) $\mathbf{4 4 4} \mathbf{~ m m H g}$
(E) 1230 mmHg
(C) 760 mmHg
2682. A gas occupies a 1.5 liter container at $25^{\circ} \mathrm{C}$ and 2.0 atmospheres. If the gas is transferred to a 3.0 liter container at the same temperature, what will be the new pressure ?
(A) 1.0 atm
(D) 5.0 atm
(B) 2.0 atm
(E) 6.0 atm
(C) 3.0 atm
2687. The volume of a confined gas can be reduced by the application of pressure at constant temperature. The change in volume may be explained by the fact that gaseous molecules
(A) take up space.
(B) are in constant motion.
(C) are relatively far apart.
(D) collide without loss of energy.
(E) all have the same velocity.
2715. If a volume of 2000 mL of a gas has the pressure increased from 1000 to 2500 mmHg , temperature remaining constant, what will be its new volume in mL?
(A) 800
(D) 3200
(B) 1250
(E) 5000
(C) 2000
2717. An amount of a gas with a volume of $6,300 \mathrm{~mL}$ is changed from a pressure of 4,800 to $1,600 \mathrm{mmHg}$ at constant temperature. What would be the approximate new volume?
(A) $1,600 \mathrm{~mL}$
(D) $9,600 \mathrm{~mL}$
(B) $2,100 \mathrm{~mL}$
(E) $\mathbf{1 9 , 0 0 0} \mathbf{m L}$
(C) $4,800 \mathrm{~mL}$
2732. Which are inversely proportional?
(A) pressure and moles
(B) pressure and temperature
(C) temperature and volume
(D) pressure and volume
(E) volume and moles
2768. Which curve represents the relationship between the volume of an ideal gas and its pressure for a certain number of molecules at a constant temperature?
(A)

(D)

(B)

(C)

2779. A given mass of dry gas is kept at constant temperature. When the pressure is doubled, the volume is
(A) halved
(B) doubled
(C) unchanged
(D) increased by a factor of four
(E) decreased by a factor of four

UNIT III

341. What is the hydrogen ion concentration, $\left[\mathrm{H}^{+}(\mathrm{aq})\right]$, in a 0.02 M aqueous solution of nitric acid, HNO_{3} ?
(A) $1 \times 10^{2} \mathrm{M}$
(D) $2 \times 10^{-12} \mathrm{M}$
(B) $2 \times 10^{1} \mathrm{M}$
(E) $2 \times 10^{-32} \mathrm{M}$
(C) $2 \times 10^{-2} \mathrm{M}$
342. Which gas in moist air will cause respiratory irritation to humans?
(A) He
(D) CO_{2}
(B) N_{2}
(E) SO_{2}
(C) O_{2}
343. What is the difference between a 1.0 M solution of a weak acid and a 1.0 M solution of a strong acid? The weak acid
(A) is more dilute
(B) does not turn litmus red
(C) does not conduct electricity
(D) has fewer hydronium ions per liter
(E) has more metal ions per liter
344. In the reaction:

$$
\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq}) \leftrightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{HPO}_{4}^{2-}(\mathrm{aq})
$$

the dihydrogen phosphate ion, $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$, acts as
(A) an acid
(D) an oxidizing agent
(B) a base
(E) a catalyst
(C) a reducing agent
374. Which statement accounts for the facts that:

I Hydrogen chloride in a nonpolar solvent does not conduct electricity.
II A water solution of hydrogen chloride, HCl , is an excellent conductor of electricity.
(A) Water is an electrolyte
(B) Hydrogen chloride ionizes in water
(C) Hydrogen chloride is a nonelectrolyte
(D) Hydrogen chloride releases electrons in water solutions
(E) Hydrogen chloride is an ionic substance
386. The name of a water solution of hydrogen fluoride, $\mathrm{HF}(\mathrm{g})$, is
(A) fluoric acid
(D) hydrofluoric acid
(B) fluorous acid
(E) hypofluorous acid
(C) perfluoric acid
401. What is the name of the 1.0 M aqueous acid solution made using HBrO_{4} as the solute?
(A) bromic acid
(D) hydrobromic acid
(B) bromous acid
(E) hypobromous acid
(C) perbromic acid
391. Base your answer to the following question on the data from the chart below.

Acid		H^{+}		Base	K_{a}
$\mathrm{H}_{2} \mathrm{SO}_{4}$	\leftrightarrow	H^{+}	+	$\mathrm{HSO}_{4}{ }^{-}$	Very Large
$\mathrm{H}_{2} \mathrm{SO}_{3}$	\leftrightarrow	H^{+}	+	$\mathrm{HSO}_{3}{ }^{-}$	1.5×10^{-2}
HSO_{4}^{-}	\leftrightarrow	H^{+}	+	$\mathrm{SO}_{4}{ }^{2-}$	1.2×10^{-2}
$\mathrm{H}_{3} \mathrm{PO}_{4}$	\leftrightarrow	H^{+}	+	$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	7.5×10^{-3}
$\mathrm{H}_{2} \mathrm{CO}_{3}$	\leftrightarrow	H^{+}	+	$\mathrm{HCO}_{3}{ }^{-}$	4.3×10^{-7}
HSO_{3}^{-}	\leftrightarrow	H^{+}	+	$\mathrm{SO}_{3}{ }^{2-}$	1.0×10^{-7}
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	\leftrightarrow	H^{+}	+	$\mathrm{HPO}_{4}{ }^{2-}$	6.2×10^{-8}
$\mathrm{NH}_{4}{ }^{+}$	\leftrightarrow	H^{+}	+	NH_{3}	5.7×10^{-10}
HCO_{3}^{-}	\leftrightarrow	H^{+}	+	$\mathrm{CO}_{3}{ }^{2-}$	5.6×10^{-11}

Which can never be an acid?
(A) NH_{4}^{+}
(D) $\mathrm{H}_{3} \mathrm{PO}_{4}$
(B) HSO_{3}^{-}
(E) HCO_{3}^{-}
(C) $\mathrm{SO}_{4}{ }^{\mathbf{2 -}}$
398. Base your answer to the following question on the data from the chart below.

Acid		H^{+}		Base	K_{a}
$\mathrm{H}_{3} \mathrm{O}^{+}$	\leftrightarrow	H^{+}	+	$\mathrm{H}_{2} \mathrm{O}$	1.0×10^{0}
HOOCCOOH	\leftrightarrow	H^{+}	+	$\mathrm{HOOCCOO}^{-}$	5.9×10^{-2}
HNO_{2}	\leftrightarrow	H^{+}	+	$\mathrm{NO}_{2}-$	4.6×10^{-4}
$\mathrm{HOOCCOO}^{-}$	\leftrightarrow	H^{+}	+	OOCCOO^{2-}	6.4×10^{-5}
$\mathrm{H}_{2} \mathrm{~S}$	\leftrightarrow	H^{+}	+	HS^{-}	9.1×10^{-8}
NH_{4}^{+}	\leftrightarrow	H^{+}	+	NH_{3}	5.7×10^{-10}

Which can never be an acid?
(A) HS^{-}
(D) NO_{2}^{-}
(B) $\mathrm{H}_{2} \mathrm{O}$
(E) $\mathrm{HOOCCOO}^{-}$
(C) NH_{3}
402. What is the name of the 0.1 M aqueous acid solution made using $\mathrm{H}_{2} \mathrm{~S}$ as the solute?
(A) salicylic acid
(D) hydrosulfurous acid
(B) sulfuric acid
(E) hydrosulfuric acid
(C) sulfurous acid

III. REACTIONS

403. What is the name of the 1.0 M aqueous acid solution made using $\mathrm{H}_{3} \mathrm{PO}_{3}$ as the solute?
(A) phosphoric acid
(D) hydrophosphoric acid
(B) phosphorous acid
(E) hypophosphorous acid
(C) potassium hydroxide
404. What is the name of the 1.0 M aqueous acid solution made using $\mathrm{CH}_{3} \mathrm{COOH}$ as the solute?
(A) ammonia
(D) carbonic acid
(B) acetic acid
(E) ethanoic acid
(C) oxalic acid
405. What is the formula of the compound which is used as the solute to make the 1.0 M aqueous acid solution that is called chlorous acid?
(A) HCl
(D) HClO_{3}
(B) HClO
(E) HClO_{4}
(C) $\mathbf{H C l O}_{2}$
406. What is the formula of the compound which is used as the solute to make the 0.1 M aqueous acid solution that is called carbonic acid?
(A) $\mathbf{H}_{\mathbf{2}} \mathbf{C O}_{3}$
(D) HCOOH
(B) $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
(E) $\mathrm{CH}_{3} \mathrm{COOH}$
(C) $\mathrm{H}_{2} \mathrm{CrO}_{4}$
407. Ninety (90.0) mL of distilled water is added to an Erlemeyer flask containing 10.0 mL of 0.095 M HCl solution. How many moles of $\mathrm{H}_{3} \mathrm{O}^{+}$are present in the flask?
(A) 0.00
(D) 0.95
(B) 0.0095
(E) 9.5
(C) 0.095
408. Which is correctly named?
(A) NH_{4}^{+}ammonia ion
(B) $\mathrm{Mn}\left(\mathrm{CO}_{3}\right)_{2}$ magnesium carbonate
(C) $\mathrm{NH}_{4} \mathbf{C l O}$ ammonium hypochlorite
(D) $\mathrm{Na}_{2} \mathrm{SO}_{3}$ sodium sulfate
(E) $\mathrm{H}_{3} \mathrm{PO}_{4}$ hydrogen phosphite
409. Gaseous chlorine when dissolved in water, produces an aqueous solution that
(A) has a pH more acidic than 7 and has no redox properties
(B) has a pH more basic than 7 and is an oxidizing agent.
(C) is neutral and is a reducing agent.
(D) has a $\mathbf{p H}$ more acidic than 7 and is an oxidizing agent.
(E) has a pH more acidic than 7 and is a reducing agent.
410. Which equilibrium constant expressions represents the first ionization of $\mathrm{H}_{3} \mathrm{PO}_{4}$ in water?
(A)

$$
\mathrm{K}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{3}\left[\mathrm{H}_{3} \mathrm{PO}_{4}^{3-}\right]}{\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]}
$$

(B) $\mathrm{K}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HPO}_{4}^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}$
(C) $\mathrm{K}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}{\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]}$
(D) $\mathrm{K}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{PO}_{4}^{3-}\right]}{\left[\mathrm{HPO}_{4}^{2-}\right]}$
(E) $\mathrm{K}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]}{\left[\mathrm{H}_{2} \mathrm{PO}_{4}\right]}$
3228. Which properties is an acid expected to have?

I electrical conductivity in water
II increase hydroxide ion concentration
III neutralize basic solutions
IV have a pH greater than 7
V ionize in water
(A) I, III and V only
(D) I, II, III, and V only
(B) I, III and IV only
(E) I, III, IV and V only
(C) II, III and V only
3229. When $\mathrm{NaHCO}_{3}(\mathrm{aq})$ reacts with $\mathrm{NH}_{3}(\mathrm{aq})$, the Brönsted-Lowry acid is
(A) NH_{3}
(D) $\mathrm{H}_{2} \mathrm{O}$
(B) $\mathbf{H C O}_{3}^{-}$
(E) Na^{+}
(C) $\mathrm{CO}_{3}{ }^{2-}$
3230. Water is a Brönsted-Lowry acid when reacting with
(A) NH_{3}
(D) HNO_{3}
(B) $\mathrm{H}_{2} \mathrm{~S}$
(E) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(C) HCN
3233. Which two act as Brönsted-Lowry acids?

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{BO}_{3}^{-}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq}) \leftrightarrow \\
& \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})^{+} \mathrm{HBO}_{3}^{2-}(\mathrm{aq})
\end{aligned}
$$

(A) $\mathrm{HCO}_{3}{ }^{-}$and $\mathrm{H}_{2} \mathrm{CO}_{3}$
(D) $\mathrm{H}_{2} \mathrm{BO}_{3}^{-}$and $\mathrm{HBO}_{3}{ }^{2-}$
(B) $\mathbf{H}_{2} \mathrm{BO}_{3}{ }^{-}$and $\mathrm{H}_{2} \mathrm{CO}_{3}$
(E) $\mathrm{H}_{2} \mathrm{BO}_{3}{ }^{-}$and $\mathrm{HCO}_{3}{ }^{-}$
(C) HCO_{3}^{-}and $\mathrm{HBO}_{3}{ }^{2-}$

UNIT IV

STOICHIOMETRY

792. A mole is

(A) 22.4 L
(D) one molar mass
(B) $\mathbf{6 . 0 2} \times \mathbf{1 0}^{\mathbf{2 3}}$ particles
(E) 16 g of oxygen
(C) one molecule
793. The number of particles in a mole is
(A) 23×10^{6}
(D) 2.24×10^{23}
(B) 2.06×10^{23}
(E) $6.02 \times \mathbf{1 0}^{\mathbf{2 3}}$
(C) 10×6.02^{23}
794. A mass of 5.58 g of iron consists of the same number of atoms as
(A) 1.00 g of hydrogen
(D) 23.0 g of sodium
(B) 20.0 g of calcium
(E) 32.0 g of sulfur
(C) 20.7 g of lead
795. How many moles of atoms are in 1.0 mole of $\mathrm{Fe}_{3}\left(\mathrm{Fe}(\mathrm{CN})_{6}\right)_{2}$?
(A) 16
(D) 29
(B) 17
(E) 39
(C) 26
796. The total number of atoms represented by the formula $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ is
(A) 15
(D) 36
(B) 16
(E) 38
(C) 27
797. How many atoms are in one molecule of sucrose, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$?
(A) 12
(D) 45
(B) 34
(E) 55
(C) 36
798. The number of molecules in 2.0 moles of carbon dioxide, CO_{2}, is
(A) 1.8×10^{24}
(D) 3.6×10^{24}
(B) 6.0×10^{23}
(E) 4.48×10^{24}
(C) 1.2×10^{24}
799. How many atoms are in the formula $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$?
(A) 12
(D) 29
(B) 18
(E) 32
(C) 22
3069. A 71-gram sample of Cl_{2} contains approximately the same number of molecules as
(A) 1.0 g of H_{2}
(D) 36 g of $\mathrm{H}_{2} \mathrm{O}$
(B) $\mathbf{3 2} \mathbf{g}$ of $\mathrm{O}_{\mathbf{2}}$
(E) 2 g of He
(C) 40 g of Ne
801. The number of oxygen atoms in the formula $\mathrm{MgSO}_{4}{ }^{\bullet}$ $7 \mathrm{H}_{2} \mathrm{O}$ is
(A) 5
(D) 21
(B) 7
(E) 27
(C) 11
802. How many moles of nitrogen atoms are there in 1.0 mole of $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}(\mathrm{~s})$?
(A) 3
(D) 16
(B) 4
(E) 20
(C) 12
1179. The molar mass of an element is equal to
(A) the mass of an atom of the element in grams.
(B) the atomic mass of the element in grams.
(C) the number of atoms in a mole of the element.
(D) the number of atoms in a gram of the element.
(E) the number of electrons in an atom in grams.
1181. The mass of one mole of any substance is
(A) equal to one gram
(B) equal to 6.02×10^{23} grams
(C) equal to the number of atoms in the substance
(D) equal to its formula mass in grams
(E) equal to the number of neutrons in an atom in grams
3062. The mole is
(A) grams of carbon
(B) liters of gas at STP
(C) a number of particles
(D) grams of oxygen gas at STP
(E) grams of nucleons
3063. What is the molar mass of elemental sulfur, ${ }_{16} \mathrm{~S}$?
(A) $16 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
(D) 16 amu
(B) $\mathbf{3 2} \mathbf{~ g}^{\left(\mathrm{mol}^{-1}\right.}$
(E) 32 amu
(C) $64 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
3064. What is the molar mass of magnesium phosphate,

$$
\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2} ?
$$

(A) $59 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
(D) $238 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
(B) $119 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
(E) $260 \mathrm{~g}^{\mathbf{m o l}}{ }^{-1}$
(C) $130 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
3065. Which sample of nitrogen gas at STP occupies the largest volume?
(A) 14 liters
(D) 1.4×10^{24} molecules
(B) $\mathbf{1 4}$ moles
(E) 4.2×10^{24} molecules
(C) 14 grams
800. How many atoms are represented in the formula $\mathrm{Mg}(\mathrm{OH})_{2 \text { ? }}$.
(A) 6
(D) 4
(B) 2
(E) 5
(C) 3

UNIT V

EQUILIBRIUM
 AND KINETICS

V. EQUILIBRIUM AND KINETICS

A. Catalysts

Base your answers to questions $\mathbf{5 1 5}$ and $\mathbf{5 1 6}$ on the graph below which shows the number of molecules with a given kinetic energy plotted as a function of kinetic energy. Four catalysts are available, $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D , which have associated reaction activation energies E_{A}, E_{B}, E_{C}, and E_{D} respectively.

515. Which catalyst has an activation energy which results in the shortest reaction time?
(A) Catalyst ' A ' associated with energy $\mathbf{E}_{\mathbf{a}}$
(B) Catalyst ' B ' associated with energy E_{b}
(C) Catalyst ' C ' associated with energy E_{c}
(D) Catalyst ' D ' associated with energy E_{d}
(E) It cannot be determined by the information given.
516. Which catalyst will have an activation energy which will result in the slowest reaction rate?
(A) Catalyst ' A ' associated with energy E_{a}
(B) Catalyst ' B ' associated with energy E_{b}
(C) Catalyst ' C ' associated with energy E_{c}
(D) Catalyst ' D ' associated with energy E_{d}
(E) It cannot be determined from the information given

V. EQUILIBRIUM AND KINETICS
 B. Concentration

504. Why does a higher gaseous partial pressure increase the reaction rate?
(A) Increased activation energy
(B) Increased number of collisions
(C) Increased average kinetic energy
(D) Increased energy for effective collisions
(E) Increased product potential energy
505. Why does increased concentration increase reaction rate?
(A) Increased activation energy
(B) Increased number of collisions
(C) Increased average kinetic energy
(D) Increased energy for effective collisions
(E) Increased energy of reactants
506. Given the equilibrium reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \leftrightarrow 2 \mathrm{NH}_{3}+92.4$ $\mathrm{kJ} / \mathrm{mol}$, which of the following could increase the reverse reaction rate.
(A) increasing the $\left[\mathrm{N}_{2}\right]$
(B) increasing the $\left[\mathrm{H}_{2}\right]$
(C) increasing the $\left[\mathrm{NH}_{3}\right]$
(D) decreasing the $\left[\mathrm{NH}_{3}\right]$
(E) decreasing the temperature
507. When a reactant is added to a reation at equilibrium, the equilibrium shifts towards the product side. Which of the following best desribes this phenomenon?
(A) Graham's law
(B) the second law of thermodynamics
(C) Gibb's free energy
(D) collision theory of reaction rates
(E) Boyle's law
508. Given the reaction $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})+$ heat $\leftrightarrow 2 \mathrm{HI}(\mathrm{g})$, what effect will increasing the pressure have?
(A) increase the $\left[\mathrm{H}_{2}\right]$
(D) decrease the [HI]
(B) increase the $\left[\mathrm{I}_{2}\right]$
(E) none of the above
(C) increase the [HI]

V. EQUILIBRIUM AND KINETICS

643. Which compound cannot be formed spontaneously from its elements at 298 K .

STANDARD ENERGIES OF FORMATION OF COMPOUNDSAT 1 atm AND 298 K

	Compound	Enthalpy of Formation $\mathrm{kJ} \cdot \mathrm{mol}^{-1}\left(\mathbf{H}_{\mathbf{f}}\right)$	Free Energy Formation $\mathrm{kJ} \cdot \mathrm{mol}^{-1}\left(\mathbf{G}_{\mathbf{f}}\right)$
(A)	Hydrogen fluoride $\mathrm{HF}(\mathrm{g})$	-271	-273
(B)	Iodine Chloride $\mathrm{ICl}(\mathrm{g})$	$\mathbf{1 8}$	-5
(C)	Nitrogen (IV) oxide $\mathrm{NO}_{2}(\mathrm{~g})$	$\mathbf{3 3}$	51
(D)	Water $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-242	-228

(A) A
(B) B
(C) C
(D) D
(E) Both A and B
671. List the compound which cannot be formed spontaneously from its elements at 298 K .

STANDARD ENERGIES OF FORMATION OF COMPOUNDS AT 1 atm AND 298 K

Compound	Enthalpy of Formation kJ•mol ${ }^{-1}\left(\mathbf{H}_{\mathrm{f}}\right)$	Free Energy Formation $\mathrm{kJ} \cdot \mathrm{mol}^{-1}\left(\mathrm{G}_{\mathrm{f}}\right)$
Nitrogen (IV) oxide NO_{2} (g)	33	51
Sodium chloride $\mathrm{NaCl}(\mathrm{s})$	-411	-384
Sulfur dioxide $\mathrm{SO}_{2}(\mathrm{~g})$	-297	-300
Water $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-242	-228

(A) nitrogen (IV) oxide
(C) sulfur dioxide
(B) sodium chloride
(D) water (g)
(E) both nitrogen (IV) oxide and water(g)
618. Four reactions are represented by the reaction diagrams shown at the same scale. Which exothermic reaction occurs most spontaneously?
(A)

(D)

(B)

(E)

(C)

627. The data represents the standard entropy and free energy of four compounds formed from their respective elements at 298 K and 1.0 atm pressure.
For which of the four compounds will a temperature increase change the reaction from being nonspontaneous to spontaneous?

	Entropy of Formation $\left(\Delta \mathbf{S}_{\mathbf{\circ}}{ }^{\circ}\right) \mathbf{J} \cdot{ }^{\circ} \mathbf{C}^{\mathbf{- 1}} \mathbf{m o l}^{\mathbf{- 1}}$	Free Energy of Formation $\left(\Delta \mathbf{G f}^{\mathbf{o}}\right) \mathbf{k J} \cdot \mathbf{m o l}^{\mathbf{- 1}}$
(A)	140	$-\mathbf{1 0 0}$
(B)	90	70
(C)	-80	50
(D)	-200	-50

(A) A
(D) D
(B) \mathbf{B}
(E) Both B and C
(C) C
631. Which decreases during all spontaneous chemical reactions at $25^{\circ} \mathrm{C}$ and 1.0 atm ?
(A) $\Delta \mathbf{G}^{\circ}$
(D) $\mathrm{T} \Delta \mathrm{S}^{\circ}$
(B) $\Delta \mathrm{S}^{\circ}$
(E) $\mathrm{T} \Delta \mathrm{H}^{\circ}$
(C) $\Delta \mathrm{H}^{\circ}$

UNIT IX

LABORATORY
3. Most student thermometers have an uncertainty of 0.2 Centigrade degrees. Which is the proper reading of the thermometer shown in the illustration?

(A) $16 .{ }^{\circ} \mathrm{C}$
(D) $16.45^{\circ} \mathrm{C}$
(B) $16.4^{\circ} \mathrm{C}$
(E) $16.405^{\circ} \mathrm{C}$
(C) $16.40^{\circ} \mathrm{C}$
6. Which measurement has the most uncertainty?
(A) $200 \pm 1 \mathrm{~g}$
(D) 2.00 ± 0.05 liter
(B) $\mathbf{1 . 0} \pm \mathbf{0 . 1} \mathrm{cm}$
(E) $500 . \pm 5 \mathrm{~m}$
(C) $10.0 \pm 0.1 \mathrm{~mL}$
8. Which is the proper reading for the buret?

(A) 21.55 mL
(D) 22.45 mL
(B) 21.7 mL
(E) 22.60 mL
(C) 22.3 mL
3173. An unknown mass of an element reacts completely with 1.811 g of sulfur and 3.613 g of oxygen to produce 7.124 g of a compound containing the element, S , and O . What additional information is required to determine the unknown mass?
(A) The formula of the product.
(B) The balanced reaction equation.
(C) The molar mass of the unknown element.
(D) The electron configuration of the unknown element.
(E) No additional information is needed.
12. Copper (II) bromide, CuBr_{2}, changes to copper (I) bromide, CuBr when heated.
$2 \mathrm{CuBr}_{2}(\mathrm{~s}) \rightarrow 2 \mathrm{CuBr}(\mathrm{s})+\mathrm{Br}_{2}(\mathrm{~g})$
Which set of masses could occur in this experiment?

	test tube	test tube $+\mathbf{C u B r}_{\mathbf{2}}$	test tube $+\mathbf{C u B r}$
(A)	20.000 g	18.300 g	18.906 g
(B)	20.000 g	20.705 g	19.548 g
(C)	20.000 g	21.636 g	22.105 g
(D)	20.000 g	23.295 g	22.117 g

(A) A
(D) D
(B) B
(E) None of the above
(C) C
3174. How many 100 mg tetracycline capsules can be made from 1 kg of tetracycline?
(A) 10
(D) $\mathbf{1 0 , 0 0 0}$
(B) 100
(E) 100,000
(C) 1,000
3175. An object having a mass of 16.85 grams is placed into a graduated cylinder containing water. The level of the water rose from 19.8 mL to 21.8 mL . Which density is expressed to the proper number of significant figures?
(A) $8 \mathrm{~g} \cdot \mathrm{~mL}^{-1}$
(D) $8.43 \mathrm{~g} \cdot \mathrm{~mL}^{-1}$
(B) $8.0 \mathrm{~g} \cdot \mathrm{~mL}^{-1}$
(E) $8.425 \mathrm{~g} \cdot \mathrm{~mL}^{-1}$
(C) $8.4 \mathrm{~g} \cdot \mathrm{~mL}^{-1}$
3176. Two samples are massed using different balances.

Sample	Mass
1	3.529 g
2	0.40 g

What is the total mass of the samples to the correct number of significant digits?
(A) 4 g
(D) 3.929 g
(B) 3.9 g
(E) 3.92900 g
(C) 3.93 g

