GRADE 5 MATHEMATICS

I. NUMBER SENSE

1. Numbers and their Properties
 A. Prime Numbers
 i. Prime vs. Composite ... 1
 ii. Prime Factorization .. 2
 B. Relationships
 i. Negative Numbers ... 4
 ii. Greatest Common Factor .. 6
 iii. Least Common Multiple ... 7
 C. Multiplication
 i. Multiply by Two Digit Numbers .. 8
 ii. Estimation of Products ... 11
 iii. Distributive Property ... 12
 iv. Exponents Related to Multiplication 13
 D. Division
 i. Divide by 1 Digit Divisors (with Remainder) 15
 ii. Divide by 2 Digit Divisors ... 16
 iii. Zeros in the Quotient ... 18
 iv. Zeros in the Dividend and Divisor 19
 E. Order of Operations ... 20
 F. Mean (Average) ... 21
 G. Identify Perfect Squares ... 23
 H. Roman Numerals ... 23

2. Fractions
 A. Proper and Improper Fractions .. 24
 B. Addition of Fractions with Like Denominators 25
 C. Subtraction of Fractions with Like Denominators 26
 D. Addition of Fractions with Unlike Denominators 27
 E. Subtraction of Fractions with Unlike Denominators 28
 F. Multiply Fractions by Whole Numbers 29
 G. Multiply with Fractions ... 31
 H. Multiply with Mixed Numbers ... 32
 I. Division with Fractions ... 33
 J. Division with Mixed Numbers ... 34
 K. Relate Fractions to Real World Situations (Multiplication) 35
 L. Relate Fractions to Real World Situations (Division) 38

3. Decimals
 A. Addition of Decimals ... 40
 B. Subtraction of Decimals ... 41
 C. Multiply Decimals by Whole Numbers 42
 D. Multiply with Decimals ... 44
 E. Division with Decimals ... 45
 F. Rounding Decimals to Thousandths 46
 G. Relate Decimals to Real World Situations (Multiplication) ... 48
 H. Relate Decimals to Real World Situations (Division) 50
4. Comparing and Ordering Numbers ... 51

5. Money as Related to Fractions and Decimals .. 56

6. Operational Properties
 A. Associative .. 58
 B. Commutative ... 59
 C. Inverse .. 60
 D. Identity ... 62

II. GEOMETRY/MODELS WITH GRAPHS

1. Polygons
 A. Identify Type (*4) ... 63
 B. Regular or Irregular ... 64

2. Angles
 A. Types of Angles .. 66
 B. Parallel and Perpendicular .. 68
 C. Measure and Draw Using a Protractor ... 70

3. Triangles
 A. Identify Type (*4) ... 72
 B. Angles of a Triangle .. 75

4. Quadrilaterals
 A. Identify Type (*4) ... 77
 B. Angles of a Quadrilateral ... 78
 C. Properties of Quadrilaterals (*4) ... 79

5. Circles
 A. Vocabulary Related to Circles and its Applications 80

6. Congruence and Similarity
 A. Slide, Flip, and Turn (*4) ... 82
 B. Congruent Lines, Angles, Shapes ... 83
 C. Lines of Symmetry (*4) ... 85
 D. Similar Figures and Congruent Corresponding Angles 86

7. Graphing
 A. Ordered Pairs/Coordinates (*4) .. 88
 B. Use a Function Table and Plot the Function 95
 C. Negative Numbers on 1 Dimensional Graphs 98
 D. Bar Graphs and Pie Charts ... 99

8. Maps and Scales
 A. Use Maps and Scales to Represent Real Objects (*4) 112
III. MEASUREMENT

1. Weight, Mass, Length (*4)
 A. Using Customary Units (*4)... 115
 B. Using Metric Units (*4).. 117
 C. Application.. 120

2. Time
 A. Convert Seconds, Minutes, and Hours... 121
 B. Convert Days, Months, Weeks, and Years.. 124

3. Perimeter
 A. Using Square Units (*4).. 126
 B. Rectangles and Squares (*4)... 127

4. Circumference
 A. Introducing π = 3.14... 130

5. Area Formulas
 A. Using Square Units (*4).. 131
 B. Quadrilaterals... 133
 C. Break Figure into Parts to Find Area... 135
 D. Right Triangles.. 138

6. Three Dimensional Figures
 A. Identify Type (*4)... 139
 B. Faces, Edges, and Vertices... 142

7. Volume
 A. Using Cubed Units... 146
 B. Length x Width x Height.. 147

8. Temperature.. 151

IV. UNCERTAINTY

1. Probability
 A. Probability Formula... 155
 B. Spinners (*4)... 159

2. Ratios and Proportions
 A. Ratios in the Real World... 162
 B. Proportions... 166

3. Percent
 A. Percent Using Grids... 169
 B. Percent Related to Ratios, Fractions, Decimals............................... 171
 C. Percent in the Real World... 173

4. Rates
 A. Rates in the Real World... 176

5. Estimation
 A. Solve Problems for which an Exact Answer is Inappropriate......... 178
V. PATTERNS/FUNCTIONS

1. Patterns and Functions
 A. Analyze and Describe a Variety of Patterns and Functions...............181
 B. Describe and Represent Patterns and Functional Relationships 186
 C. Develop Methods to Solve Basic Linear Equations.......................188
 D. Use Patterns and Functions to Represent and Solve Problems......... 190

VI. MATHEMATICAL REASONING

1. Analyzing Data
 A. Create a Stem-and-Leaf Plot... 193
 B. Interpret Different Diagrams and data.......................................194

2. Simple and Compound Statements..204

3. Inductive Reasoning
 A. Apply a Variety of Reasoning Strategies.....................................205
 B. Make Conclusions Based on Inductive Reasoning.........................207
I. NUMBER SENSE

1. Numbers and their Properties
 A. Prime Numbers... 211
 B. Relationships
 i. Factors... 212
 ii. Multiples.. 214
 C. Representation
 i. Apply the Exponential Form of Powers of 2-10........... 215
 ii. Use Expanded Notation to Express Large Numbers..... 216
 D. Rational vs. Irrational... 218

2. Integers
 A. Order of Integers.. 218
 B. Reading and Writing Integers....................................... 220
 C. Integers on a Number line (Addition)........................... 221
 D. Integers on a Number line (Subtraction)....................... 222
 E. Multiplication (Three Digits)....................................... 223
 F. Division (Three Digits)... 224

3. Fractions
 A. Addition of Fractions and Mixed Numbers.................... 226
 B. Subtraction of Fractions and Mixed Numbers................ 227
 C. Multiply Fractions and Mixed Numbers........................ 228
 D. Divide Fractions and Mixed Numbers............................ 231

4. Decimals
 A. Order of Decimals... 230
 B. Addition of Decimals... 231
 C. Subtraction of Decimals... 232
 D. Multiply Decimals: Hundredths.................................... 233
 E. Divide Decimals: Hundredths....................................... 234

5. Compare Integers, Fractions, and Decimals........................ 236

6. Order of Operations... 238

7. Properties
 A. Associative... 239
 B. Commutative.. 240
 C. Distributive... 241
 D. Inverse... 242
 E. Identity... 243
 F. Zero... 244

8. Understand and Apply Ratios, Proportions and Percents
 A. Problem Solving.. 245
 B. Explain and Compare 2 Data Sets................................. 246
 C. Using Circle Graphs.. 247
 D. Apply Concepts.. 248
II. MODELING/MULTIPLE REPRESENTATION

1. 3-Dimensional Shapes
 A. Visual (Choose the Correct Shape) (*4,5)................................. 251
 B. Represent, Draw and Measure 2D Figures.................................... 254

2. Use the Coordinate Plane to Explore Geometric Ideas
 A. Apply the Coordinate Plane... 256

III. MEASUREMENT

1. Estimate, Make, and Use Measurements in the Real World
 A. Using a Protractor.. 261
 B. Area of a Triangle.. 262
 C. Volume/Capacity of Prisms and Cylinders.................................. 263

2. Statistics
 A. Probability/Certainty of Events.. 265
 B. Summary, Middle, and Spread.. 268
 C. Create Histograms.. 269
 D. Create Line, Picture, Circle Graphs.. 272
 E. Create a Stem and Leaf Graph (*5)... 274
 F. Choose the Best way to Display Data.. 276
 G. Distinguish between Mean, Median, and Mode as Measures of Centr 277
 H. Create and Count the Sample Space....................................... 279
 I. Percents (*5).. 280

IV. UNCERTAINTY

1. Use Estimation
 A. To Check Results Obtained by Computation............................. 281
 B. To Solve Problems For Which an Exact Answer is Inappropriate (*5) 282
 C. To Estimate the Probability of Events...................................... 283

2. Combinations and Arrangements
 A. Use Tree Diagrams.. 285
 B. Make Organized Lists.. 286
 C. Discover the Multiplication Principle...................................... 288

V. PATTERNS/FUNCTIONS

1. Linear Equations with Variables
 A. Solve in 1 Step... 291
 B. Solve Using Strategies.. 293
 C. Differentiate Between Linear and Quadratic Relationships........ 295

2. World Problems Involving Number Sentences and Solving For 1 Variable 296

3. Patterns
 A. Recognize a Wide Variety of Patterns and Functions (*5)......... 297
 B. Using Tables, Charts, and Graphs, and Verbal Descriptions (*5).... 300
 C. Use Patterns and Functions to Represent and Solve Problems (*5) 301
VI. MATHEMATICAL REASONING

1. Draw Conclusions About Mathematics
 A. Make and Evaluate Conjectures and Arguments.................................303

2. Analyze Mathematical Situations
 A. Create Concrete Models for Complex Problems..................................304
 B. Use Models to Display Relationships...307

3. Conclusions Through Logical Reasoning
 A. Use Reasoning to Study Mathematical Scenarios (*5)..........................308
 B. Use Venn Diagrams...310
2. How many of the first 10 numbers (1 to 10) are prime?
 (1) 1 (2) 2 (3) 3 (4) 4

3. Explain why 17 is prime:
 Prime numbers are counting numbers that can be divided by only 2 numbers: 1 and themselves. Since 17 can only be divided by 1 and 17 it is prime.

4. Explain why 24 is not a prime number.
 Prime numbers are counting numbers that can be divided by only 2 numbers: 1 and itself. Since 24 can be divided by more than 2 numbers, it is not prime. The factors of 24 are: 1, 2, 3, 4, 6, 12, 24.

24. List all the prime numbers between 1 and 14:

 2, 3, 5, 7, 11, 13

61. Which of the following groups contains only prime numbers?
 (1) 3, 5, 6 (2) 5, 7, 9 (3) 3, 5, 7 (4) 3, 7, 9

62. How many prime numbers are there between 1 and 20?
 (1) 5 (2) 6 (3) 7 (4) 8

121. Which of the following is not a prime number?
 (1) 3 (2) 5 (3) 7 (4) 9

124. Which is a set of prime numbers?
 (1) 2, 3, 5 (2) 2, 3, 6 (3) 1, 5, 8 (4) 3, 5, 10

429. Which of the following is a prime number?
 (1) 21 (2) 36 (3) 47 (4) 48

430. Which of the following is not a prime number?
 (1) 7 (2) 11 (3) 27 (4) 49

438. All numbers which are not prime...
 (1) Are only divisible by themselves and one.
 (2) Are even.
 (3) Are odd.
 (4) Have a unique prime factorization.
158. Each board game has 17 pieces. Jamie bought 18 games. How many game pieces are there in total?
 \(\text{(1) 35} \quad \text{(2) 102} \quad \text{(3) 204} \quad \text{(4) 306} \)

Base your answers to questions 467 and 468 on the information below.

Jerry spends his Saturday mornings mowing his neighbors’ lawns for money. He gets paid $21 per lawn.

467. How much money can Jerry make if he mows 10 lawns?
 \(\text{(1) $31} \quad \text{(2) $210} \quad \text{(3) $212} \quad \text{(4) $220} \)

468. How much money can he make if he mows 13 lawns?
 \(\text{(1) $212} \quad \text{(2) $263} \quad \text{(3) $273} \quad \text{(4) $277} \)

1796. If \(a = 6 \), \(b = 10 \), and \(c = 12 \), which of the following expressions equals 192?
 \(\text{(1) } (12 - c) \times a \times b \quad \text{(2) } a(b + 6) \quad \text{(3) } c(a + b) \quad \text{(4) } a(b \times c) \)

2065. Michele has 21 rows of plants in her garden. Each row has 17 plants. How many plants are in her entire garden?
 \(\text{(1) 132} \quad \text{(2) 38} \quad \text{(3) 168} \quad \text{(4) 357} \)

2066. Cynthia is going pumpkin-picking. There are 57 rows of pumpkins with 75 pumpkins in each row. How many pumpkins are there for Cynthia to choose from?
 \(\text{(1) 132} \quad \text{(2) 684} \quad \text{(3) 3,845} \quad \text{(4) 4,275} \)

2067. Larry wants to buy a pet. At the pet store, there are 29 different types of pets. There are 45 of each type of pet. How many pets are there in total for Larry to choose from?
 \(\text{(1) 1,305} \quad \text{(2) 965} \quad \text{(3) 161} \quad \text{(4) 74} \)

2396. Mr. Chung planted 40 rows of vegetables on his farm. Each row contains 25 vegetables. How many vegetables are there in total?
 \(\text{(1) 1,000} \quad \text{(2) 950} \quad \text{(3) 850} \quad \text{(4) 65} \)

2413. Bradley’s class organized a car wash to benefit a local charity. They charged $6 per car and washed 64 cars. How much money did they collect?
 \(\text{(1) $384} \quad \text{(2) $206} \quad \text{(3) $584} \quad \text{(4) $1,840} \)

2559. Lockhart Middle School has four fifth grade classes with 27 students in each class. Wilbanks Middle School has three fifth grade classes with 23 students in each class. How many total fifth grade students are there in both schools?
 \(\text{(1) 150} \quad \text{(2) 173} \quad \text{(3) 177} \quad \text{(4) 173} \)

2560. Each roll of quarters has 40 quarters in it. How many quarters are there in 15 rolls?
 \(\text{(1) 600} \quad \text{(2) 450} \quad \text{(3) 300} \quad \text{(4) 55} \)

2585. The fifth grade students at Paulson Middle School collect 26 cans per day for a recycling competition. If they continue to collect cans at this rate, how many cans will they collect over 180 days?
 \(\text{(1) 4,680} \quad \text{(2) 3,600} \quad \text{(3) 2,060} \quad \text{(4) 206} \)

2716. \((62)(15) = (5)(62) + \) \((1) (10)(60) \quad \text{(2) (12)(60)} \quad \text{(3) (10)(62)} \quad \text{(4) (10)(15)} \)
41. Eugene needs $0.70 to buy a candy bar. He has 1 quarter, 2 dimes, 4 nickels, and 3 pennies. How many pennies would he need to buy the candy bar?
(1) 2 (3) 20
(2) 12 (4) 200

71. Tillie had 3 quarters, 5 dimes, and 4 nickels in her pocket. Would she have enough money to buy a flower for $1.00 and a lollipop for $0.25?
(1) no she needs $0.15 more
(2) yes and have $0.20 left over
(3) yes and have $0.15 left over
(4) no she needs $0.20 more

81. Katalina needs $85 to buy her parents an anniversary gift. She makes $3.00 on Mondays, Wednesdays, and Fridays, $4.00 on Tuesdays and Thursdays, and doesn't work on the weekend. How long will it take her to earn enough money for the gift?
(1) 4 weeks (3) 3 weeks
(2) 5 weeks

118. Terrance and Jodi want to buy their mother a present. They decide to buy her a sweater that costs $43.18. They each give $25 to the clerk to pay for the gift. How much change should they each get?
(1) $3.41
(2) $3.45
(3) $6.83
(4) $21.59

135. Julie bought candy for some of her friends. She bought 5 candy bars for 85¢ each and 4 bags of candy for $2.43 each. She handed the cashier a $20 bill. How much change did she receive?
(1) $6.03
(2) $10.28
(3) $13.97
(4) $21.59

137. A taxi driver charges an initial rate of $2.00 plus 65¢ per mile. Beth travels 15 miles in the taxi. How much does she owe the taxi driver?
(1) $2.65
(2) $9.75
(3) $11.75
(4) $13.75

138. A new bike costs $150. Marissa has $62 saved for the bike. At her job, she is paid $8 an hour. How many hours does she need to work before she can afford the bike?
11 hours

392. Kristen wants to buy a candy bar which costs $1.50. She has three quarters, two dimes, and four nickels. How many pennies does she need before she can buy the candy bar?
(1) 10 (3) 40
(2) 35 (4) 50

702. Josiah bought 10 lollipops at a store for 15 cents each. If he also had a coupon for 35 cents off the total cost, which of the following could Josiah use to find out how much money he needed?
(1) (10 × 0.15) + 0.35 = $1.85
(2) (10 × 0.35) – (10 × 0.15) = $2.00
(3) (10 × 0.15) – 0.35 = $1.15
(4) (10 – 0.15) – 0.35 = $9.50

1899. Which amount is $35.00 when rounded to the nearest dollar?
(1) $34.49 (3) $35.54
(2) $34.70
(4) $35.90

1900. Mary's mother spent $85.90 on groceries in January, $80.97 in February, $89.05 in March, and $80.75 in April. In which month did she spend the least on groceries?
(1) January
(2) February
(3) March
(4) April

1902. Round $67.55 to the nearest dollar.
(1) $67.00
(2) $67.60
(3) $68.00
(4) $70.00

1914. Paul's father spent $45.75 on gas in July, $45.57 in August, $47.55 in September, and $47.05 in October. In which month did he spend the greatest amount on gas?
(1) July
(2) August
(3) September
(4) October

1917. Which combination of nickels and pennies will amount to $0.38?
(1) 6 nickels, 8 pennies
(2) 3 nickels, 8 pennies
(3) 4 nickels, 14 pennies
(4) 6 nickels, 5 pennies

2424. Kwame bought some candy for $1.45 and he received $0.31 in change. What is the fewest number of coins he could have received?
(1) 2
(2) 3
(3) 4
(4) 5
188. In right triangle $\triangle ABC$, with right angle B, which of the following is true?

1. The sum of angles A and B is 90°.
2. The sum of angles A and C is 90°.
3. The sum of angles A and B is 180°.
4. The sum of angles A and C is 180°.

189. In right triangle $\triangle ABC$ with right angle C, which of the following is true?

1. The sum of angles A and B is 90°.
2. The sum of angles A and C is 90°.
3. The sum of angles A and B is 180°.
4. The sum of angles A and C is 180°.

205. In the figure below, the measure of angle a is 20°. What is the measure of angle b?

- 50°
- 60°
- 70°
- 80°

285. One angle in a right triangle is measured to be 56°. The measurements of the other angles are 90° and 80°.

1. 24°
2. 34°
3. 44°
4. 54°

292. Base your answer to the following question on the diagram below.

What is the measure of the missing angle?

1. 30°
2. 31°
3. 32°
4. 33°

459. If a triangle has one angle which is obtuse then,

1. The sum of the other two angles must be equal to 90 degrees.
2. The sum of the other two angles must be greater than 90 degrees.
3. The sum of the other two angles must be less than 90 degrees.
4. None of the above.

460. If a triangle has one right angle then the other two angles must be,

1. obtuse
2. acute
3. right
4. No way to tell

1142. Find the measure of the unknown angle.

1143. Find the measure of the unknown angle.

1144. Find the measure of the unknown angle.

2538. One of the acute angles of a right triangle measures 35°. What is the measure of the other acute angle?

1. 45°
2. 50°
3. 55°
4. 145°

2546. If two angles of a triangle are equal then which of the following is true?

1. All three angles of the triangle are equal.
2. The angles are measured 45°.
3. Two sides of the triangles are equal.
4. Three sides of the triangle are equal.
168. Rectangle $ABCD \approx EFGH$ where \overline{AC} corresponds to \overline{EH}.

What is the measure of \overline{EH}?
(1) 2 m (3) 8 m
(2) 4 m (4) 16 m

169. Rectangle $ABCD \approx EFGH$ where \overline{AC} corresponds to \overline{EH}.

What is the measure of \overline{EH}?
(1) 5 m (3) 40 m
(2) 11 m (4) 88 m

170. In the figure below, $\triangle ABC \approx \triangle DEF$.

What is the length of side \overline{EF}?
(1) 2 m (3) 8 m
(2) 4 m (4) 16 m

171. In the figure below, $\triangle ABC$ is similar to $\triangle DEF$.

What is the length of side \overline{EF}?
(1) 5 in. (3) 18 in.
(2) 15 in. (4) 135 in.

185. Which two of the following figures are similar but not congruent?
(1) 2 and 4 (3) 3 and 4
(2) 1 and 5 (4) 2 and 3

193. Which of the following pairs of shapes are similar?
(1)
1851. What point is located at (0, 2)?
(1) \(D\) (2) \(E\) (3) \(G\) (4) \(H\)

1852. How are points \(B\) and \(E\) alike?
(1) They have the same x-coordinate.
(2) They have the same y-coordinate.
(3) They lie in the same quadrant.
(4) They have nothing in common.

1853. Making a rectangle with points \(B\) and \(C\) as 2 opposite vertices, find the coordinates of the other 2 vertices.
(1) \((-1, -1)\) and \((-2, 4)\) (2) \((1, -1)\) and \((-2, -4)\) (3) \((1, -1)\) and \((2, -4)\) (4) \((-1, -1)\) and \((-2, -4)\)

184. Graph a quadrilateral with the coordinates \((-6, 9)\), \((7, 9)\), \((7, 4)\), \((-6, 4)\).

What is the area of this figure?
65

Base your answers to questions 213 and 214 on the number line below.

213. Which point best represents \(-2\frac{1}{2}\)?
(1) \(M\) (2) \(N\) (3) \(O\) (4) \(P\)

214. Which point best represents \(-3\frac{1}{2}\)?
(1) \(M\) (2) \(N\) (3) \(O\) (4) \(P\)

215. Which point best represents \(\frac{1}{3}\)?
(1) \(A\) (2) \(B\) (3) \(C\) (4) \(D\)

216. Which point best represents \(-\frac{2}{3}\)?
(1) \(A\) (2) \(B\) (3) \(C\) (4) \(D\)

219. Which point on the number line below could represent \(\frac{2}{3}\)?
(1) \(A\) (2) \(B\) (3) \(C\) (4) \(D\)

221. Which point on the number line below could represent \(-4\)?
(1) \(A\) (2) \(B\) (3) \(C\) (4) \(D\)
Base your answers to questions 1649 through 1651 on the scale drawing below.

Child’s Room

- **Closet**
- **Bathroom**
- **Bedroom**

Scale: 1 cm = 4 m

1649. What are the actual dimensions of the child’s closet?
- (1) 2 cm × 3 cm
- (2) 2 m × 3 m
- (3) 6 m × 7 m
- (4) 8 m × 12 m

1650. What are the actual dimensions of the child’s bedroom?
- (1) 32 m × 40 m
- (2) 24 m × 40 m
- (3) 10 m × 6 m
- (4) 10 cm × 6 cm

1651. What are the actual dimensions of the child’s entire room?
- (1) 32 m × 10 m
- (2) 32 m × 24 m
- (3) 40 m × 8 m
- (4) 40 m × 32 m

Base your answers to questions 1652 and 1653 on the scale drawing below.

Clothing Store

- **Storage Area**
- **Sales Floor**

Scale: 1 cm = 3 m

1652. What are the actual dimensions of the sales floor?
- (1) 33 m × 15 m
- (2) 15 m × 21 m
- (3) 15 m × 7 m
- (4) 5 m × 7 m

1653. What are the actual dimensions of the entire clothing store?
- (1) 84 m × 15 m
- (2) 33 m × 15 m
- (3) 24 m × 15 m
- (4) 14 m × 8 m

Base your answers to questions 1857 through 1859 on the following scale drawing.

Grocery Store

- **Storage Room**
- **Aisle #4**
- **Aisle #3**
- **Aisle #2**
- **Aisle #1**
- **Checkout Counter**

Scale: 1 cm = 3 m

1857. What are the actual dimensions of the check-out counter?
- (1) 3 cm × 4 cm
- (2) 6 m × 7 m
- (3) 9 m × 12 m
- (4) 12 m × 16 m

1858. Assuming all aisles are the same size, what are the actual dimensions of aisle #2?
- (1) 12 m × 24 m
- (2) 7 m × 5 m
- (3) 6 m × 12 m
- (4) 4 m × 2 m

1859. What are the actual dimensions of the storage room and the aisles?
- (1) 9 m × 12 m
- (2) 12 m × 42 m
- (3) 12 m × 33 m
- (4) 16 m × 42 m
2917. How long is the bee? (Round to the nearest cm)

(1) 1.5 cm (3) 2 cm (2) 1.9 cm (4) 2.2 cm

2918. Mary is measuring the wingspans of different butterflies. What is the wingspan of the butterfly depicted in the picture below? (Round to the nearest cm)

(1) 6.75 cm (3) 7.05 cm (2) 7 cm (4) 7.10 cm

2919. How long is the bird in the diagram below? Round to the nearest cm.

(1) 2.8 cm (3) 3 cm (2) 2.9 cm (4) 3.2 cm

2920. Find the wingspan of the fly. Round to the nearest centimeter.

(1) 4.8 cm (3) 5 cm (2) 4.9 cm (4) 5.1 cm

2962. About how tall is an adult man?

(1) 2 centimeters (3) 2 kilometers (2) 2 meters (4) 2 millimeters

2966. 3 meters = ______ centimeters.

(1) .03 (3) 30 (2) .3 (4) 300

2987. Four boys measured their height.

Julio was 1.66 meters
Yang was 155 centimeters
Leonard was 1.7 meters
Sam was 160 centimeters

Which boy was the tallest?

(1) Julio (3) Leonard (2) Yang (4) Sam

2988. A car is 4 meters long. The car is __________ millimeters long.

(1) 400 millimeters (3) 4,000 millimeters (2) 3,600 millimeters (4) 8,000 millimeters

3012. Which measurement is about the same as the length of a baseball bat?

(1) 1 meter (3) 1 centimeter (2) 1 kilometer (4) 1 millimeter

3026. What unit of measure should be used to measure a pencil?

(1) centimeter (3) kilometer (2) meter (4) millimeter

3077. If Suzie had 60 meters of string on her kite, how many centimeters of string were on her kite?

(1) .66 centimeters (3) 600 centimeters (2) 6,000 centimeters (4) .6 centimeters
211. If the dimensions of the figure below were increased by 100%, what would be the change in the perimeter of the figure?

![Rectangle](image)

(1) \(\frac{1}{4} \) as long
(2) \(\frac{1}{2} \) as long
(3) 2 times longer
(4) 4 times longer

234. Use the figure below to answer the question.

![Cross](image)

The area of each square in the figure is 16 square units. What is the perimeter of the figure?

(1) 16 units
(2) 32 units
(3) 48 units
(4) 64 units

251. Mr. Diaz wants to build a fence around his yard. The yard is 140 feet long and 30 feet wide. How many feet of fencing will he need?

(1) 170 ft.
(2) 200 ft.
(3) 340 ft.
(4) 420 ft.

253. Mr. Bill wants to build a fence around his garden. The garden is 50 feet long and 20 feet wide. How many feet of fencing will he need?

(1) 30 feet
(2) 70 feet
(3) 140 feet
(4) 280 feet

254. Mr. Joe is building a house. It is going to be 30 feet long and 60 feet wide. What is the perimeter of the house?

(1) 30 ft.
(2) 90 ft.
(3) 180 ft.
(4) 1,800 ft.

273. What is the perimeter of a rectangle with sides 9 feet and 5 feet?

(1) 14 ft.
(2) 22 \(\frac{1}{2} \) ft.
(3) 28 ft.
(4) 45 ft.

286. What is the length of a side of a square if its perimeter is 16 centimeters?

(1) 2 cm
(2) 4 cm
(3) 6 cm
(4) 8 cm

287. The perimeter of a square sandbox is 24 feet. Which equation will determine the side, \(s \), of the sandbox?

(1) \(2s = 24 \)
(2) \(s^2 = 24 \)
(3) \(2s^2 = 24 \)
(4) \(4s = 24 \)

291. Base your answer on the information and figure below. Mr. Kim and his son own a farm. They built a fence to enclose their farm as shown in the diagram below.

How many feet of fencing was used?

3,400 ft

304. Base your answer to the following question on the parallelogram below. (All units measured in inches)

What is the perimeter of the parallelogram?

(1) 19 inches
(2) 20 inches
(3) 38 inches
(4) 40 inches

457. The perimeter of a square is 24 meters. What is the length of the side of an equilateral triangle with the same perimeter?

(1) 4 meters
(2) 5 meters
(3) 7 meters
(4) 8 meters
82. Ricky and Casey are going to an amusement park. They can spend only 5 hours in the park. Before getting on any ride they must wait on a line about 25 minutes long. Each ride is about 5 minutes long and each ride has a line. How many rides can Ricky and Casey go on in the 5 hours they have?

(1) 15 rides
(2) 5 rides
(3) 10 rides
(4) 25 rides

90. Dawson did the stats for the football team in his school.

FOOTBALL STATS

<table>
<thead>
<tr>
<th>Stats of Game</th>
<th># of each</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wins</td>
<td>5</td>
</tr>
<tr>
<td>Loses</td>
<td>3</td>
</tr>
<tr>
<td>Ties</td>
<td>2</td>
</tr>
</tbody>
</table>

What is the ratio of wins to loses?

(1) \(\frac{3}{5}\)
(2) \(\frac{5}{10}\)
(3) \(\frac{5}{3}\)
(4) \(\frac{3}{10}\)

154. Jake can complete his chores in 15 minutes. He does his chores every day of the week. How many minutes per week does he spend doing chores?

(1) 75 minutes
(2) 90 minutes
(3) 105 minutes
(4) 120 minutes

710. On a class field trip, there was 1 adult for every 8 students. If a total of 54 students and adults went on the trip, how many were students?

(1) 6
(2) 46
(3) 48
(4) 50

747. Oleg can make 3 slides for every 5 pictures she develops. If she develops 30 pictures, how many slides can she make?

(1) 15
(2) 18
(3) 30
(4) 50

748. The ratio of horses to chickens on a farm is 3:2. If the farm has 18 horses, how many chickens do they have?

(1) 6
(2) 12
(3) 20
(4) 27

161. The amount of calories for each food is given below.

- Pretzel: 150 calories
- Doughnut: 190 calories
- Popcorn: 38 calories
- Cookie: 68 calories

What is the ratio of food items that have less than 100 calories to food items that have more than 100 calories?

(1) 1:3
(2) 1:2
(3) 1:1
(4) 2:1

885. In a package of paper, the ratio of red paper to blue paper is 2 to 3. Mrs. Smith bought 6 packages of paper for her class. If she has 60 sheets of red paper, how much blue paper does she have?

(1) 20 sheets
(2) 40 sheets
(3) 90 sheets
(4) 120 sheets

890. The are 80 students in the school sports program. The swimming team has 20 students. What is the ratio of students on the swimming team to all students in the sports program?

(1) \(\frac{1}{4}\)
(2) \(\frac{4}{3}\)
(3) \(\frac{7}{16}\)
(4) \(\frac{4}{7}\)

979. The actual distance between Thomas Jefferson Middle School and West Meadow Beach is 48 miles. The distance between the towns is 4 inches on a map. What is the scale of the map?

(1) 1 mile = 12 inches
(2) 1 inch = 16 miles
(3) 1 mile = 16 inches
(4) 1 inch = 12 miles
5. Estimation

720. Estimate 67% of 24.
(1) 8 (3) 16
(2) 12 (4) 18

778. A bookshelf can hold 116 books. Each shelf can fit up to 28 books. To estimate how many shelves are needed, which equation should be used?
(1) $120 + 30 = 150$
(2) $120 \div 4$
(3) $120 \times 30 = 3,600$
(4) $120 - 30 = 90$

785. Saki’s family eats 3 to 5 oranges per day. Which is the best estimate for how many days it will take Saki’s family to eat a bag of 30 oranges?
(1) 3 to 10 days
(2) 5 to 8 days
(3) 6 to 10 days
(4) 8 to 12 days

787. Last year there were 1175 students at Ward Melville High School. This year there are 15 percent more students than last year. Approximately how many students are at Ward Melville High School this year?
(1) 1,400
(2) 1,500
(3) 1,600
(4) 1,800

924. Jorge and Todd went apple picking together. Jorge picked a total of 23 apples and Todd picked a total of 36 apples. What is the best estimate of the product of their two apple collections?
(1) 100 apples
(2) 600 apples
(3) 700 apples
(4) 800 apples

925. Nelly counted the number of birthday candles in a box and got 58. How many candles are approximately in 8 boxes?
(1) 400
(2) 480
(3) 600
(4) 800

926. Eggs cost 11 cents each. Rayna buys 29 eggs. How much will the eggs approximately cost her?
(1) $3.00
(2) $3.50
(3) $4.00
(4) $5.00

927. Roberto invited 28 of his friends to his birthday party. He is going to the store to buy supplies and he needs two cups, two plates, and three napkins for each person. How many cups, plates, and napkins does he approximately need?
(1) 190
(2) 210
(3) 230
(4) 250

2831. Fanny bought three packs of candy for $0.99 each. About how much did they cost all together? $3

928. Danielle is making lemonade for her lemonade stand. She needs ten lemons and two quarts of water for every ten people. Danielle predicts she will have 72 customers. Approximately how much water does she need?
(1) 14 quarts
(2) 28 quarts
(3) 35 quarts
(4) 70 quarts

929. Every day for three weeks Claudia saved 38 cents. Approximately how much money did she save in total?
(1) $7
(2) $7.50
(3) $8
(4) $8.50

930. In a survey Dave finds that 67 of his 100 classmates are right-handed. Based upon his data what is the best estimation of the number of right-handed students in a group of 300 students?
(1) 240
(2) 250
(3) 220
(4) 210

959. Pears cost $0.48 per pound at the supermarket. Which is the best estimate of the cost of 2 1\frac{1}{4} lb of pears?
(1) $1.10
(2) $1.25
(3) $1.30
(4) $2.00

966. A class recycles about 42 cans each week. What is the best estimate for how many cans they will have recycled after 14 weeks?
(1) 450
(2) 500
(3) 560
(4) 600

2517. Kendra is selling candy bars for a school fundraiser. If each candy bar costs $0.45 and Kendra needs to raise $20, then which of the following is the best estimate to how many candy bars Kendra needs to sell in order to earn $20?
(1) 20
(2) 40
(3) 60
(4) 70

2593. Tamika and her parents are building some bookshelves in her room. If each shelf can hold about 17 books and Tamika has 102 books, how can Tamika estimate how many shelves she needs?
(1) $100 \div 20 = 5$
(2) $100 + 20 = 120$
(3) $100 \times 20 = 2,000$
(4) $100 - 20 = 80$

2616. Which of the following expressions is closest to 591 – 107?
(1) 600 – 200
(2) 600 – 100
(3) 1,000 – 100
(4) 500 – 100

2832. Hot dogs cost $0.99 each. Harry buys 4 hot dogs and hands the cashier $5. About how much change does he receive? $1
263. Two lines are either parallel or intersecting.

Is this statement true or false? Support your answer with a proof or examples, as appropriate.

False. The lines could be skew lines.

293. There are 20 peanuts in a bag. If Allison and Hanna take turns eating one peanut each, and Allison eats the first peanut, then who eats the third to last peanut?

(1) Hanna
(2) Allison

394. There are 20 chips in a bag. If Mike, Andrew, and Lisa take turns eating one chip each, and Mike eats the first chip, Andrew the second, Lisa the third and they continue in this pattern, who eats the last chip?

(1) Mike (3) Lisa
(2) Andrew

2238. Melissa only collects pennies that she finds facing heads up. If she finds one penny facing heads up for every 3 pennies she finds, when will she have 10 pennies collected?

(1) After finding 10 pennies
(2) After finding 20 pennies
(3) After finding 30 pennies
(4) After finding 60 pennies

2239. At the batting range, Jonathan, Brandon, and Ben take turns hitting the ball. If Jonathan hits the first ball, Brandon hits the second ball, Ben hits the third ball, and they continue in this pattern to hit a total of 32 balls, who hits the last ball?

(1) Jonathan
(2) Brandon
(3) Ben

2240. Jessica and Alanna take turns watching their favorite half-hour TV programs. If they start watching TV at 12:00 p.m. and Jessica watches her show first, who watches their favorite show from 4:30-5:00 p.m.?

(1) Alanna
(2) Jessica

2241. Cory, Daniel, Jesse, and John each take turns eating cookies. Cory eats the first cookie, John eats the second cookie, Daniel eats the third cookie, Jesse eats the fourth cookie and they continue in this pattern, who eats the 30th cookie?

(1) Cory
(2) Daniel
(3) Jesse
(4) John

2242. Rebecca, Aliza, and Danielle take turns feeding their dog. If Aliza feeds the dog of Sunday, Danielle feeds the dog on Monday, Rebecca feeds the dog on Tuesday and they continue in this pattern, who feeds the dog on Friday?

(1) Rebecca
(2) Aliza
(3) Danielle

2243. Jenna has a pair of blue jeans, a pair of black pants, and a pair of sweatpants that she switches off wearing every 3 days. If she wears the sweatpants on the 1st day of school, the blue pants on the 2nd day of school, the black pants on the 3rd day of school, and she continues in this pattern, what pair of pants does she wear on the 17th day of school?

(1) blue jeans
(2) black jeans
(3) sweatpants

2244. Sophia, Jack, Brett, and Maria take turns watching their little sister Mary. If Sophia watches Mary on Monday, Maria watches her on Tuesday, Jack watches her on Wednesday, Brett watches her on Thursday, and they continue in this pattern, who watches Mary on Saturday?

(1) Sophia
(2) Brett
(3) Jack
(4) Maria

2664. Mohammad can only play soccer on a day when it does not rain. In the month of May, it has rained the 4th, 10th, and 16th. If rain continues to follow this pattern, which day should Mohammad expect to play soccer?

(1) May 20
(2) May 22
(3) May 28

2670. Slim and Jim both want to use the internet. Their mother tells them to alternate every hour. If Slim wants to visit a website at 7:30 P.M., what time should he try to start using the Internet?

(1) 3 P.M.
(2) 4 P.M.
(3) 2 P.M
(4) 6 P.M.

2671. There are ten toys in a grab bag. If Jamison, Scott, and Natalie take turns reaching into the bag, and Jamison grabs the first gift, Scott the second, Natalie the third, and they continue in this pattern, who gets the last remaining gift?

(1) Jamison
(2) Scott
(3) Natalie

2696. Jones won $1,000,000 in the lottery. He had to pay taxes on his winnings. If he was only left with $350,000 after paying his taxes and buying a $250,000 car, how much did he pay in taxes?

(1) $250,000
(2) $300,000
(3) $350,000
(4) $400,000

© 1998-2006 Eduware, Inc.
827. Albert goes to school early every fourth day. If he went to school early on Thursday, what is the next day when he will go to school early?

(1) Tuesday (3) Thursday
(2) Wednesday (4) Friday

828. Mick volunteered at a retirement home on August 3, 7, and 11. If the same pattern continues, what will be the first day Mick volunteers in September?

(1) September 2 (3) September 4
(2) September 3 (4) September 5

829. At the zoo, the gorillas were fed on May 7, 10 and 13. If the same pattern of feeding continues, what is the next date the gorillas will be fed?

(1) May 15 (3) May 19
(2) May 16 (4) May 24

830. At the zoo the bears were fed on May 4, 9, and 14. If the same pattern of feeding continues, what is the next date the bears will be fed?

(1) May 15 (3) May 19
(2) May 16 (4) May 24

2383. A survey of 50 students was taken to find whether they preferred football or baseball. There were 18 fewer students who preferred baseball. How many students preferred football?

(1) 16 (3) 34
(2) 32 (4) 38

2384. Wanda walks to school 4 days a week. The walk to school takes 10 minutes and the walk home takes 13 minutes. How much time does it take Wanda to walk to school and home each week?

(1) 32 minutes (3) 1 hour and 12 minutes
(2) 1 hour and 2 minutes (4) 1 hour and 32 minutes

2686. A survey was taken of 65 students to see if they preferred chocolate, vanilla, or strawberry ice cream. Twice as many students prefer chocolate to strawberry, while five more students prefer vanilla to strawberry. How many students prefer vanilla?

(1) 15 (3) 25
(2) 20 (4) 30

2687. 4-year old Bill has a brother 3 times his age. In how many years will Bill be one half the age of his older brother?

(1) 3 (3) 5
(2) 4 (4) 6

2690. There are 50 people involved in setting up the race. There are 10 more volunteers than paid workers at the race. What is the number of volunteers involved in the set up?

(1) 10 (3) 30
(2) 20 (4) 40

2691. Bob, Steve, and Tony all collect comic books. Bob has twice as many as Steve and Tony has 8 more than Bob. If they have 43 comic books between the three of them, how many does Tony have?

(1) 14 (3) 7
(2) 28 (4) 22

2692. Sandy has three times as many peaches as Smithers. If the combined cost of both of their peaches is $56, and every peach costs $2, how many peaches does Smithers have?

(1) 7 (3) 14
(2) 21 (4) 28

2693. Babe plays softball twice a week. Each time she plays, she pitches 3.5 innings. If the season lasts 10 weeks, how many total innings will she pitch in the season?

(1) 50 (3) 70
(2) 60 (4) 80

2695. James is arranging two triangular tables to seat his friends. Each table can typically seat one friend on each side. If the tables are pushed together so they share one side, how many fewer seats are available?

(1) 4 (3) 2
(2) 3 (4) 1

2697. What is the sixth number in the pattern below?

1.1 , 1.8 , 2.5 , 3.2 , 3.9 ,

(1) 5.0 (3) 5.3
(2) 5.2 (4) 5.6

2896. For their summer jobs, Bobby makes twice as much as Jon per hour. If Jon makes d dollars per hour, Bobby must make______dollars per hour.

$2d$
1460. Which of the following is a factor of 21?
(1) 2
(2) 7
(3) 9
(4) 42

1461. Which of the following is not a factor of 75?
(1) 5
(2) 15
(3) 25
(4) 150

1462. Which of the following is a common factor of 24 and 54?
(1) 4
(2) 5
(3) 6
(4) 8

1463.5 and 7 are common factors for which number?
(1) 20
(2) 21
(3) 35
(4) 40

1464. Which of the following is not a factor of 63?
(1) 3
(2) 7
(3) 9
(4) 18

2143. Which of the following is not a factor of 18?
(1) 2
(2) 6
(3) 12
(4) 18

2144. Which of the following numbers is a factor of 45?
(1) 2
(2) 6
(3) 15
(4) 90

2145. What is a common factor of 24 and 60?
(1) 48
(2) 15
(3) 12
(4) 7

2146. What is a common factor of 75 and 20?
(1) 2
(2) 4
(3) 5
(4) 10

2147. Which of the following is not a common factor of 18 and 54?
(1) 2
(2) 6
(3) 9
(4) 12

2519. Which of the following numbers is divisible by both 4 and 5?
(1) 24
(2) 44
(3) 85
(4) 100

2607. Which of the following numbers is divisible by 4?
(1) 42,348
(2) 41,842
(3) 43,963
(4) 44,534

2608. Which of the following numbers is divisible by 3?
(1) 1,153
(2) 1,041
(3) 1,093
(4) 1,234

2613. Which of the following numbers has both 3 and 4 as factors?
(1) 18
(2) 21
(3) 36
(4) 40

2729. 345432 is divisible by
(1) 2,3,4,5,6,8,9,and 10
(2) 2,3,4,6,8,9, and 10
(3) 2,3,4,6,8,9, and 10
(4) 2,3,4,5,6,8, and 9

2730. Write out the divisibility rule for 3.
If the sum of the digits of a number is divisible by 3, the number is divisible by 3.

2731. If a number is divisible by both 2 and 3, it is also divisible by
(1) 9
(2) 8
(3) 6
(4) 4

2732. A number is divisible by 10 if and only if
(1) it is divisible by both 4 and 5
(2) it is divisible by both 3 and 10
(3) its last digit is a multiple of 5
(4) its last digit is a 0.

2733. A number is divisible by 4 if
(1) the last digit is a 4
(2) the last digit is divisible by 4
(3) the sum of the digits is divisible by 4
(4) the number formed by the last two digits is divisible by 4

2734. A number is divisible by 8 if
(1) the sum of the digits is divisible by 8
(2) the number formed by the last two digits is divisible by 8
(3) the number formed by the last three digits is divisible by 8
(4) the last digit is divisible by 8

2735. A number is divisible by 5 if
(1) the last digit is 0 only.
(2) the last digit is either 5 or 0.
(3) the number is divisible by 10.
(4) the sum of the digits is divisible by 5.

2736. 3 □ 3,333
What values could be plugged in to the number above to ensure that it is divisible by 3?
(1) 3 only
(2) 3, 6, 9
(3) 0, 3
(4) 0, 3, 6, 9

3140. Write out the divisibility rule for 3.
If the sum of the digits of a number is divisible by 3, the number is divisible by 3.
1453. What is the difference between $\frac{1}{4}$ and $\frac{1}{2}$?
 (1) There is no difference because they are equivalent fractions.
 (2) $\frac{1}{2} < \frac{1}{4}$
 (3) $\frac{1}{4} < \frac{1}{2}$
 (4) $\frac{1}{2}$ is four times larger than $\frac{1}{4}$.

1454. What is the relationship between 0.35 and 0.36?
 (1) 0.36 < 0.35
 (2) 0.35 is one tenth less than 0.36
 (3) 0.35 is one hundredth greater than 0.36
 (4) 0.35 is one hundredth less than 0.36

2115. Which of the following fractions is equivalent to 0.75?
 (1) $\frac{1}{4}$
 (2) $\frac{1}{2}$
 (3) $\frac{3}{4}$
 (4) $\frac{5}{7}$

2116. Which decimal is equivalent to $\frac{3}{8}$?
 (1) 0.13
 (2) 0.25
 (3) 0.33
 (4) 0.50

2117. Which of the following fractions is not equivalent to 0.25?
 (1) $\frac{1}{4}$
 (2) $\frac{2}{8}$
 (3) $\frac{3}{9}$
 (4) $\frac{4}{16}$

2118. Which of the following numbers are displayed from smallest to largest?
 (1) $\frac{1}{5}$, 0.4, $\frac{3}{4}$
 (2) $\frac{3}{4}$, 0.4, $\frac{1}{5}$
 (3) 0.4, $\frac{3}{4}$, $\frac{1}{5}$
 (4) $\frac{1}{5}$, $\frac{3}{4}$, 0.4

2119. Which decimal is greater than $\frac{3}{8}$?
 (1) 0.55
 (2) 0.75
 (3) 0.80
 (4) 0.95

2125. How are 0.455 and 0.555 related?
 (1) 0.455 is one less than 0.555
 (2) 0.455 is one tenth less than 0.555
 (3) 0.455 is one hundredth less than 0.555
 (4) 0.455 is one thousandth less than 0.555

2126. What is the relationship between 1.50 and 3.60?
 (1) 3.60 is 2 greater than 1.50
 (2) 1.50 is 2 and one hundredth less than 3.60
 (3) 1.50 is 2 and one tenth less than 3.60
 (4) 3.60 is 2 and one thousandth greater than 1.50

2127. How are $\frac{1}{2}$ and $\frac{3}{8}$ related?
 (1) $\frac{1}{2}$ is less than $\frac{3}{8}$
 (2) They are both greater than $\frac{7}{8}$
 (3) $\frac{1}{2}$ is greater than $\frac{3}{8}$
 (4) They are equivalent fractions

2128. What is the relationship between 4.44 and 5.45?
 (1) 4.44 is 1 and 1 tenth less than 5.45
 (2) 4.44 is 1 hundredth less than 5.45
 (3) 4.44 is 1 and 1 hundredth less than 5.45
 (4) 5.45 is 1 and 1 thousandth greater than 4.44

2129. What is the relationship between $\frac{1}{3}$ and $\frac{2}{4}$?
 (1) $\frac{1}{3}$ is twice as large as $\frac{2}{4}$
 (2) $\frac{2}{4}$ is greater than $\frac{1}{3}$
 (3) $\frac{2}{4}$ is twice as large as $\frac{1}{3}$
 (4) They are equivalent fractions

2134. Which of the following fractions is equivalent to 30%?
 (1) $\frac{1}{3}$
 (2) $\frac{30}{100}$
 (3) $\frac{3}{10}$
 (4) $\frac{1}{10}$

2135. What is 0.45 written as a percentage?
 (1) 4.5%
 (2) 0.45%
 (3) 450%
 (4) 45%

2136. Which of the following is not equivalent to 20%?
 (1) $\frac{1}{5}$
 (2) 0.20
 (3) $\frac{2}{25}$
 (4) $\frac{20}{100}$
Base your answers to questions 1689 and 1690 on Mrs. Chow's class' test grades: 73, 75, 79, 80, 82, 86, 88, 88, 90, 91, 92, 92, 93, 95, 96, 97, 99, 100

1689. Create a stem and leaf plot for the test grades above. Be sure to include a key.

```
7 | 3 5 9
8 | 0 1 2 6 6 8 8 9
9 | 0 1 2 2 3 5 6 7 9
```

Key: $7 \underline{3} = 73$

1690. Based on your stem and leaf plot, what is the median of the data?

(1) 88
(2) 88.19
(3) 89
(4) 99

Base your answers to questions 1691 and 1692 on the following information.
Gabriella loves to read. For one month, she recorded how many pages she read each day. These are the results: 20, 21, 23, 24, 25, 37, 37, 38, 39, 39, 45, 45, 45, 49, 49, 49, 50, 50, 51, 52, 55, 56, 57, 61, 65, 66, 67, 67

1691. Use the data above to create a stem and leaf plot for the number of pages read each day by Gabriella. Don't forget to include a key.

```
2 | 0 1 3 4 5
3 | 7 7 8 9 9
4 | 5 5 5 6 9 9 9 9
5 | 0 0 1 2 5 6 7
6 | 1 5 6 7 7
```

Key: $2 \underline{0} = 20$ pages

1692. Based on the stem and leaf plot above, what is the mode of the data?

(1) 39
(2) 45
(3) 49
(4) 50

2360. Veronica scored 10, 15, 22, 24, and 26 points in the last five basketball games. In the same five games, Jessica scored 2, 9, 17, 18, and 31 points. Create a stem and leaf plot to display this data. Remember to include a key.

```
Veronica       Jessica
0 | 0 2 9
5 | 0 1 7 8
6 | 4 2 7 8 9
```

Key: $0 \underline{2} = 2$ points

2361. Lauren and Charlie collect stamps. They had 5 stamps the first week, 12 stamps the second week, and 18 stamps the third week. In the following weeks, they had 29, 40, 56, 68, and 75 stamps. Create a stem-and-leaf plot to display their stamp collection throughout the 8-week period.

```
0 | 5
1 | 2 8
2 | 9 3
4 | 0
5 | 6 8
6 | 7 5
```

Key: $0 \underline{5} = 5$ stamps

Base your answers to questions 2362 through 2364 on the information below.

2362. Stephanie received the following scores in her last 15 games of bowling:
221, 97, 209, 105, 207, 121, 203, 134, 189, 167, 172, 168, 171, 168, 170

Create a stem-and-leaf plot, with a key, to display the distribution of her bowling scores.

```
9 | 7
10 | 5
11 | 9 1
12 | 1 1
13 | 4
14 | 1
15 | 1
16 | 7 8 8
17 | 1 2
18 | 9
19 |
20 | 3 7 9
21 |
22 |
```

$9 \underline{7} = 97$ points
MATHEMATICS GRADE 6
V. PATTERNS/ FUNCTIONS
3. Patterns
C. Use Patterns and Functions to Represent and Solve Problems (*5)

1345. Brandy puts $12 in the bank each week to save up for a new bicycle. If the bike costs $199, how many weeks will it take her to have enough money for the bike?
(1) 2 (3) 16
(2) 12 (4) 17

Base your answers to questions 1346 through 1349 on the formula $T = 0.50m + 10$. This formula represents the total cost of gas per mile driven for Tony's car.

1346. What is the cost of gas if Tony's family drives 30 miles?
(1) $160 (3) $25
(2) $70 (4) $10

1347. Find the cost of gas if Tony drives 250 miles.
(1) $22.50 (3) $480
(2) $135 (4) $1,260

1348. How many miles did Tony's family drive if they spent $260 on gas?
(1) 540 (3) 135
(2) 500 (4) 125

1349. If Tony's family drives 1,500 miles, what is the difference in price if he pays $0.75 per mile?
(1) They will pay $1,490 more if they use the formula.
(2) They will pay $1,490 more if they pay $.75 per mile.
(3) They will pay $365 less if they use the formula.
(4) They will pay $1,125 less if they pay $.75 per mile.

2217. Susan earns $8 per hour at the pet store. If she works 5 hours a day, 3 days a week, how long will it take her to earn $720?
(1) 3 weeks
(2) 5 weeks
(3) 6 weeks
(4) 7 weeks

2218. Kyle needs $175 to buy a dog. If his parents give him $20 per week in allowance, how many weeks will it take him to earn enough money?
(1) 8 weeks
(2) 9 weeks
(3) 10 weeks
(4) 12 weeks

2219. Charlie earns $5 for each house he shovels when it snows in the winter. How many houses must he shovel to earn enough money to buy a bike that costs $99?
(1) 18 houses
(2) 19 houses
(3) 20 houses
(4) 21 houses

2751. Jen has a certain number of apples. Her brother, Jack, has twice as many. If x represents the number of apples Jen has, how many apples does Jack have?
(1) x
(2) $2x - 3$
(3) $2x + 2$
(4) $x + 3$

2752. Barbara bought several pens. Mickey bought three more than twice the number of pens Barbara got. If x represents Barbara's pens, what expression shows how many pens Mickey has?
(1) $2x + 3$
(2) $2x - 3$
(3) $2x + 2$
(4) $x + 3$

2754. What expression can generate all odd numbers? (Assume you are plugging in integral values for x)
(1) $2x$
(2) $2x + 1$
(3) x^2
(4) x^3

2755. Jameson has a certain number of garlic knots. If he eats two, what expression represents the number he has left?
(1) $x - 2$
(2) $x + 2$
(3) $2x$
(4) $2x + 1$

2890. Steven wants to buy a computer game and a bicycle. If the computer game costs half as much as the bicycle and the cost of the computer game is represented by x, what expression correctly identifies the cost of the bicycle?
$2x$
337. It is possible to create a triangle with an area greater than 1,000,000,000 cm² but with a height less than 0.00001 cm?
(1) True
(2) False

409. It takes a boat twenty minutes to go one mile downstream. The same boat makes the trip upstream in 40 minutes. How long would it take an un-powered raft to make the trip?
(1) 20 minutes
(2) 40 minutes
(3) 60 minutes
(4) 10 minutes

509. Ms. Wang divided her students into groups of seven for a classroom activity. There were two students left over. Which of the following could be the number of students in Ms. Wang’s class?
(1) 10
(2) 14
(3) 17
(4) 23

510. Mr. Silverman divided his students into groups of six for a classroom activity. There were two students left over. Which of the following could be the number of students in Mr. Silverman’s class?
(1) 11
(2) 14
(3) 36
(4) 45

511. Mr. Burton divided the students in his class into groups of four. There were three students left over. Which of the following could be the number of students in Mr. Burton’s class?
(1) 29
(2) 35
(3) 38
(4) 42

574. Ethan wants to use ready made 6-foot long fence sections for his yard. His yard measures 31 feet long by 35 feet wide. How many fence sections would he need to surround his yard?
(1) 22
(2) 30
(3) 160
(4) 180

575. There are 29 members of the math class who are going on a field trip. Each van can hold up to 6 students. How many vans will be needed to safely carry all of the students?
(1) 4
(2) 4.5
(3) 4.83
(4) 5

576. Talia is thinking of a number in her head. If she subtracts 6 from her number and divides the resulting number by 7, she gets 4. What is the original number?
(1) 22
(2) 28
(3) 34
(4) 40

577. Brad is thinking of a number. If he adds 5 to the number and divides the resulting number by 3, he will get 14. What is the original number?
(1) 35
(2) 37
(3) 42
(4) 47

578. Jeanette is thinking of a number. If she multiplies the number by 8 and subtracts 3 from the resulting number, the result is 29. What is the original number?
(1) 4
(2) 5
(3) 6
(4) 7

579. Miguel is thinking of a number. If he multiplies the number by 10 and adds 2 to the resulting number, the result is 7. What is the original number?
(1) 1
(2) 1
(3) 2
(4) 2

580. Alfonso is thinking of a number. If he divides the number by 4 and adds 3.75 to the resulting number, the result is 4. What is the original number?
(1) 1
(2) 1
(3) 1
(4) 2

581. Harvey is thinking of a number. If he subtracts 10 from his number and multiplies the resulting number by 6, the result is –24. What is the original number?
(1) 2
(2) 4
(3) 6
(4) 8

582. Gabriel is thinking of a number. If he multiplies the number by 3 and adds 4, the result is –17. What is the original number?
(1) –9
(2) –7
(3) –4
(4) 13

586. Which can be used to find the missing number in the number sentence below?
3 × [□] = 42
(1) 42 × 3
(2) 3 ÷ 42
(3) 42 − 3
(4) 42 + 3

2972. Do two different rectangles with the same perimeter necessarily have the same area?
No